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FORMAL SOLUTIONS FOR A CLASS
OF STOCHASTIC PURSUIT-EVASION GAMES

by
W. W. Willman
Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts
ABSTRACT

A class of differential pursuit-evasion games is examined in
which the dynamics are linear and perturbed by additive white
Gaussian noise, the performance index is quadratic, and both players
receive measurements perturbed .independently by additive white
Gaussian noise. A direct application of the saddle point condition is
used formally to characterize linear minimax solutions in terms of a
system of implicit integro-differential equations, which appears to be
more complicated than the ordinary kind of two point boundary value
problem. It is also shown that games of this type possess a ''certainty-
coincidence' property, meaning that their behavior coincides with that
of corresponding deterministic games in the event that all noise values
are zero. This property is used to decompose the minimax strategies

into sums of a certainty-equivalent term and error terms.



1. BACKGROUND

The ﬂf;eory of two-person zero-sum differential games was first
developed by Isaacs in 1954 [1], who used game-theoretic concepts
originated earlier by von Neumann and Morgenstern [2] together with
the properties of dynamic systems to produce results of computational’
interest. A convenient summary of this theory is contained in his book
[3]. In 1957, Berkowitz and Fleming [4] used variational techniques to
investigate a restricted class of differential games, a class later
expanded by Berkowitz {5].

A more thorough examination of linear-quadratic pursuit-evasion
games was made in 1965 by Ho, Bryson, and Baron [6], who showed
that a linear control law is optimal for both players in this type of
game. A natural extension of this game is obtained by assuming that
the players have imperfect information to the extent that they must act
on the basis of measurements which are linear functions of the state
corrupted by additive white noise. An important subclass of such
games, including the classical interception problem, was solved by
Behn and Ho [7] in 1968 for the case in which one player has access to
perfect information about the state of the game. A linear control law
is optimal for both players in this situation as well, the player with
noisy measurements using a certainty-equivalent control, and his
opponent adding a term to his certainty-equivalent control proportional

to the first player's error. As a result, assuming that the optimal
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control laws are used in both cases, the time behavior of the state
variable coincides with that of the corresponding deterministic game
if the player with noisy measurements happens to receive correct
measurements and begins with the correct estimate of the initial state.
Some interesting results in the area of stochastic differential games
are also being developed by Rhodes and Luenberger {8].

The game of interest here is an extension of the linear-quadratic
pursuit-evasion game in which both the pursuer and evader have
access only to noisy measurements and in which process noise is
added to the dynamics. The main difficulty in making this extension
stems from the fact that each player has only imperfect knowledge of
the information available to his opponent. The optimal control laws in
this context are again found to be linear functionals of the players'
available measurements, but as an apparent consequence of this im-
perfect knowledge, attempts to express these control laws in terms of
finite-dimensional "estimate vectors'" (i. e., summary statistics of the
measurements) have been unsuccessful. An additional complication is
that the solution to such a game is expressed implicitly in terms of a
set of differential equations which is more complicated than the
standard type of two point boundary value problem.

It is possible, however, to show that the optimal control laws
for this class of games consist of a certainty-equivalent term plus two
error terms, both of which are zero in the event that both players'
estimates of the state are initially correct and all measurement and
process noise values happen to be zero. This means that the trajectory

followed by the stochastic differential game under these circumstances
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coincides with that followed by the corresponding deterministic game,
if the optimal control laws are used in both cases. Thus, a 'certainty-
coincidence'" property, which holds for the class of games considered
by Behn and Ho [7], extends to this case as well.,

The approach adopted here is basically formal, but hopefully is
indicative of how a mathematically more substantial development of

this topic might proceed in a sufficiently broad context to be of interest.






2. PROBLEM STATEMENT

A. A Deterministic Game

Considerable attention thas focused on pursuit-evasion games
with linear dynamics and qliadratic‘ payoff, both because much is known
about their solutions and because they arise naturally in the pertur-
bation analysis of a more general class of differential games. The
specific type of game considered here is a two~person one in which an
n-dimensional state vector (of real numbers) x obeys the transition
equation

X = Gpu - G_v ; x(0) given (1)

and the payoff, which one playei‘ (the pursuer) wishes to minimize and
the other player (the evader) wishes to maximize, is the quadratic
functional

1

J="2-

t
[XT(tf)SfX(tf) + fo t (uTBu-VTCV)dt] (2)

where tf is some prescribed terminal time, -and the initial time is
taken to be zero without loss of generality. The m-dimensional vector
u(t) is the control chosen by the pursuer at time t and v(t) is the k-
dimensional control vector chosen by the evader at that time. Gp, Ge’
B, and C are time-varying matrices of the required dimensions, and
B and C are symmetric and positive definite. The ma’t:rix,Sf is sym-
metric and positive semidefinite. It is also assumed that both players

know all the parameters which define the game. It has been shown by
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Ho, Bryson, and Baron [6] that a seemingly more general class of
linear games can be reduced to this form by using the concepts of
reduced state and predicted terminal miss.

A solution to such a game, and also to two-person zero-sum
games in general, is a pair of control laws, or strategies, for the two
players which is optimal in a sense to be defined shortly. By a
strategy is meant a decision rule that specifies the control to be used
by a player, as a function of the information available to him, in any
situation that might arise. Therefore, a complete description of a

game must include the information sets available to each player upon

which his control decisions must be based. To avoid confusion,
strategies will be labelled by capital letters to distinguish them from
the control values that they determine.

A pair of strategies for the two players (U°, v°) is called opti-

mal, or minimax, if it satisfies the saddle-point condition, which

means that for any strategy pair (U,’V’) based on the available infor-

mation set,

J(U,v% = 3(U°, v° = J(u°, v). (3)

That is, each strategy of a minimax pair optimizes against the other.
Such a minimax strategy pair is defined to be a solution of the game.

It may be that there is more than one minimax pair of strategies.
If this happens, say for the pairs (UO, Vo) and Ul, Vl), the saddle point
condition can be applied twice to obtain

70°, vl < 3(U°, vO) < sl v < 3wl vl < 5wl v,
(4)
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Therefore, since all these values must be the same, the same payoff
is obtained if either of these pursuit strategies is played against
either of the evasion strategies. For this reason, it makes sense to
apply the term "minimax' to strategies as well as strategy pairs, since
it is equivalent to say that U° is a minimax strategy if there exists an
evasion strategy V° such that the pair (%, v°) is minimax in the sense
defined earlier. Strictly speaking, it may happen in some games that
some combination of pursuit and evasion strategies results in a
meaningless situation, whereas another combination of the same
strategies is meaningful, in which case the breceding reasoning does
not apply. In the type of game under consideration here, however, the
controls are combined additively, and this problem does not arise.
The definition of solution is also sometimes extended to include
randomly mixed strategies, but these will not be considered here.

The solution (i. e., the minimax strategies) to the linear-
quadratic game posed earlier has been found by Ho, Bryson, and
Baron [6] for the ‘case Whe%e both players have perfect knowledge of

the state x. When a solution exists, it is given by

U°: u= -B_ngSx (5)

<
o)

<

I

= -claTsx (6)
where S is the solution to the matrix Riccati equation

A —‘1 T _ -1.,T _

S = S[GPB Gp GeC__l Ge }S, S(tf) = Sf. (7)

A solution to the game does not exist if S becomes infinite on the

interval (O, t_f) as the differential equation is integrated backwards
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from t;. If the solution is bounded on [0,t;], then the strategies U°

o ..
and V- are minimax.

B. An Effect of Imperfect Information

It is also well known that if the players' information sets in this
game are changed so that they both know the initial state exactly but
have no direct knowledge of subsequent values of the state vector, the
minimax control laws, if they exist, are given by
U': u= —B_ngSy (8)

and

<
<
I

- -c"'alsy (9)
where S is the same as before, and y is determined by the differ-

ential equation

o “1.T _~ 5-1aT _ _
y=|a,clal -0 B GT sy 5 y(0 = xo). (10)

Notice that, although the control variable and state variable histories
are the same in both cases when the minimax strategies are played
(another example of the certainty—coinéid’en‘ce property), the strategies
U1 and ’V1 are open-loop (functions of t only), whereas U° and VO are
closed-loop (functions of both x and t). There are, however, condi-
tions under which a solution exists for the closed~loop problem, but
not the open-loop problem. In fact, a solution to the open—loop game
exists only when the solution to the differential equation

T

. -1 . _
K= KGeC GeK, K(tf) Sf

remains finite on the interval [0, tf]. An intuitive explanation for this
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phenomenon is that it is easier for the evader to escape under the open-

loop conditions because the lack of information hurts the pursuer more

than the evader.

C. A Related Stochastic Game

A type of game intermediate between these open-loop and closed-
loop ex‘qremes can be formulated by altering ’ghe players' information
sets so that they each have access to noisy measurements of the state,
by includ_ing process noise in the transition equation, and by modifying
the criterion J to be the prior expected value of the payoff. Specifi-
cally, the generic game of intergst here is that in Whic;h the transi’ciqn
equation is

5(=Gpu-Gev+'§', (11)

the criterion to be minimaximized is

1

7-1le [XT(tf)sfx(tf) + fof (U Bu-vICv) dt], (12)

and the measurements available to the pursuer and evader are,
respectively,
z =Hx+w (13)
P p %
and

z, = Hex + W, (14)

where zp and z, are q- and r-dimensional vectors, Hp and He are

time-varying matrices, and
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€ [0 Q0 : 0
Wp is a Gaussian white noise 0 s 0 : Rp : 0 process.
- - - R I
Yo 0 0,0 Ry

It is also assumed that both players start with a common prior proba-
bility assessment of the initial state which is Normal (}?O, Po)‘ and
statistically independent of the measurement and process noises.
Notice that the expected value operator in equation (12) is unambiguous
since both players have the same prior assessment of the initial state.
The assumption that both players know the paranieters of the
game must in this context be extended to include knowledge of the sta-
tistical parameters as well. In particular, this includes their
opponents'! prior estimates of the initial state, a knowledge of which
would be available in a situation where the initial state is determined
by an outside random event whose statistics are known to both players.
The dynamics of this stochastic differential game are illustrated

in Figure 1.
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3. DERIVATION OUTLINE

A. The Basic Method

The method used here to solve the stochastic game is based on
the fact that the saddle point condition for a minimax strategy pair
(U°, v°:

J(U,Vv° = J(U°,v%) = J(U°, V)
characterizes these strategies in terms of a pair of associated

stochastic optimal control problems. That is, the saddle point

condition is equivalent to u° being a solution to the stochastic optimal
control problem

J(U°, v° = min J(U, V°) (15)
: U

and V° being a solution to

J(U°, v°) = max J(U°, V) . (16)
> |

This equivalence is used to characterize minimax strategies as follows:

(i) Guess the functional form of a pair of minimax strategies.

(ii) Substituting the assumed form of the evader's minimax
strategy into the transition and criterion equations, solve
the resulting stochastic optimal control problem for the
pursuer in terms of the parameters of the strategy assumed
for the evader. -

(iii) Repeat stvep (ii) with the roles of the pursuer andvevader

interchanged.
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(iv) Obtain conditions on the parameters under which the assumed
pair of strategies is minimax by requiring that the results of
the optimizations of steps (ii) and (iii) be consistent with the

strategies guessed in step (i).

The success of this method clearly depends on making a good guess iﬁ
step (i), so that the results of steps (ii.) and (iii) have the same
functional form as the strategies originally assumed. The following
simple example, which can be considered a one-stage game, illus-

trates the application of this method.

Example
y=x+u-v (transition equation)
J = % e[ay2+u2 - cvz] , ¢>a>0 (criterion)
Z, =X + w5 (pursuer's measurement)
Ze =x+ W (evader's measurement)

o) (1] 1))

common prior is Normal(0, p)

Step 1
Assume there exists a minimax strategy pair of the form

Ol

U u = bzp (pursuit strategy)

vO. v = dz_  (evasion strategy)

Step 2
If the evader uses the generic strategy assumed in step 1, the

associated optimal control problem facing the pursuer is described by
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y=x+u- d(X-l-We)
J =—§- £ [ay2+uz- cdz(x+we')2]

Z =x+w
p p

This is an example of the classical ''linear-quadratic-Gaussian'' control
problem, the solution to which is well known. Expressing the solution
as a function of zp gives

__[ ap(d-1) ]
T D pray | %p

Step 3

An analogous argument shows that the maximizing evasion

strategy against the assumed pursuit strategy is

_ ap(b+1)]
V= (a-c)(p+r) Ze-

Step 4

Straightforward substitution shows that the results of steps 2 and
3 are consistent with the strategies assumed in step 1 (i.e., the values

of u and v are the same for almost all values of zp and ze) if

X ‘ap[(c-a)(ptr) - ap]
(a+1)(c-a)(pta)(ptr) + a’p

2

ap[(a+1)(p+q) +ap]

B (a+1)(c—a)(p+q)(p+f) + a2p2

Therefore, if b and d satisfy these equations, the strategies assumed

in step 1 are minimax because they satisfy the saddle point condition

by construction (steps 2 and 3). End of example.
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Since white noise processes do not really exist except as a kind
of shorthand notation for a sequence of successively better approxi-
mating step-function processes, it is misleading and unreasonable to
treat them formally as ordinary random processes. For this reason,
a direct application of the preceding method to a continuous-time
stochastic game requires the use of mathematical concepts beyond the
scope of this report. Accordingly, an approach is adopted here in
which the solution to the game of interest is obtained in three basic
stages. First, the multi-stage analogue of the stochastic differential
game described in the previous section is solved by the method out~
lined above. The (linear) solution is characterized by a system of
implicit difference equations. Next, this solution is used to obtain a
flirst order approximation of the solution to a discretized version of
the differential game for small discretization intervals. Finally, the
asymptotic form of such solutions is found in the limit as the dis-
cretization interval becomes infinitesimal. This lim‘iting form of the
solutions to successively finer discretizations of the differential game
is taken to be the solution to this differential game. Here, the implicit
difference equations become a system of implicit integro-differential
‘equations with split boundary conditions. This approach implicitly
describes what is really meant by a stochastic differential game of
this type and its solution, but a rigorous discussion of these matters

is beyond the scope of this report.
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B. The Multistage Game

The corresponding multistage game, which is treated in detail in
Appendix A, is described as follows, where i is an integér index

varying from 0 to N-1 for some fixed integer N:

x(i+1) = x(i) + Gp(i)u(i) - Ge(i)v(i) + &(i)

N-1
J = -é- s[XT(N)Sfx(N) + i;() (uT(i)B(i)u(i) - VT(i)C(i)v(i)>]
zp(i) = Hp(i)x(i) + Wp(i)’

ze(i) = He(i)x(i) + We(i)

E(3) "o Qi {0 !0
Tt R ol B e e
: are independent Normal o i, 0 : Rp(l)i 0
- U T T D - o e
weld) 0 0 , 0 IR ()

The common prior is independent of the noises and

is Normal(x ,P ).
0’7 o

A solution to this game is obtained via the method described

earlier by assuming minimax strategies of the form

N ‘ i . -
u(i) = —ap(l) - L Ap(l, J)ZP(J)

=0

1 .
v(i) =a (i) + ZO A Dz ()
J:

and characterizing the parameters a and A in terms of a set of

implicit difference equations. In order to derive the implicit equations,
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it is expedient to define the "enlarged'' state variables (i), np(i), and
ne(i), each of Which is a partitioned vector with N+1 partitions, and

which are defined for i =0, ..., N-1 and j=0, ..., N as

x(j)sjsi

x(i) ;=1

wi(j);ijsi
0 ;;j>1

{wetj) 5y < i}
0 ;;j>i

where (7r(i))j denotes the j-th partition of #(i), etc. The vector 7(i) is

(np(i»j

(ne(i)>j

called "the past of x at time i" since it contains all the information
needed to determine all the previous values of the state vector x. For
similar reasons np(i) [n(1)] is called "the past of W, [w.] at time i."
The reason for defining these enlarged state variables is that
the associated stochastic optimal control problems for the assumed

pair of minimax strategies are of the classical linear-quadratic-

Gaussian type when formula‘ced in terms of these variables. This means

that the extensive body of results known for this control problem can be
applied to obtain the solutions of these associated optimal control
problems explicitly in terms of the parameters of the opponents'
assumed strategies, leading directly to a set of implicit difference
equations for the '"enlarged'' matrices characterizing the linear
solutions (i. e., solutions of this assumed form) to this multistage

game.
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C. The Basis of the Certainty-Coincidence Property

In the above formulation, moreover, each player's measurement

noise appears as process noise in his opponent's associated optimal

control problem. For this reason, it can be argued via the certainty-

equivalence principle for linear-quadratic~-Gaussian control problems
that the sample path followed by the controls and state under this mini-
max strategy pair, for the case in which the initial estimate is correct

and all process and measurement noises are zero, is the same path as

that followed by the corresponding deterministic multistage game under
its minimax strategies when started in the same initial state. This
"certainty~coincidence'' property is useful in interpreting the solution
to the stochastic differential game, which is the topic of ultimate

interest.

D. The Discretized Game

The next stage of the derivation is to divide the time interval
[0.t;] into N small subintervals of equal length A. If, for the
stochastic differential game described earlier, the pursuer and evader
are restricted to use constant control values during each subinterval, the transi~
tion and criterion equation can be expressed in multistage form. These
equations are linear and quadratic, respectively, and for small & can

be approximated to first order by

x[(i+1)A] = x(iA) + A[Gp(iA)u(iA) —Ge(iA)v(iA)+§’(iA)]

1 T N T
J =3 eyx (NA)Sx(NA) + [u™ (14)B(A)GA) - v (18)C(A)v(iA) | A¢
J

i=0
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This game can be posed entirely in the discrete-time format if the
players' measurements are appropriately discretized, which is

accomplished by allowing them to make measurements of the state
only at times iA ;i =0,...,N-1. That is, the piecewise continuous

conirols must be based on the measurements
zb(iA) = Hp(iA)x(iA) + Wp(iA) (pursuer)

ze(iA) = He(iA)x(iA) + We(iA) (evader)

In order to approximate the differential game situation properly, it is
necessary to adjust the statistics of the measurement noises and the
process noise so that they have asymptotically the same effect over
each subinterval. This is done by choosing A&(iA), AWp(iA), and
Awe(iA) to have the same respective statistics as the random variables

(i+1)A (i+1)A (i+1)A
{ f S(t)dt} , [ f Wp(t)dt] , and ( f we(t)dt]
iA i

iA iA

§(ia)

That is, in the discretized game, | w_(iA) | is defined to be a sequence

We(iA)

of independent random variables which are

—~ — r -\
1 !
0 N Q(iA) \ 0 \ 0
JE s = = o - = = g - - - -
R | . i
Normal 0 s 0 N Rp(lA) | 0
O e e = = = = .
1 i 1
i 0 i 0 i 0 N Re(iA)_
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The solution to this discretized version of the differential game
is then obtained as a special case of the multistage game already solved,
which is accomplished by making the following formal substitutions:
i - ia
Gp(i) - Gp(iA)A
Ge(i) - Ge(iA)A
B(i) - B(ia)a
C(i) - C(ia)a
Q) - £ Qia)

L
A
1

Re(i) - ZRe(iA)

Rp(i) - Rp(iA)

The purpose for constructing this discretized game is to
determine the asymptotic form of its solution as A approaches zZero.
As a first step in this direction, the first order approximations of the
equations characterizing the solution are obtained for small A. This
step is not altogether straightforward because the dimensions of the

enlarged state variables used in the solution vary as 1 so the

A
dimensions of the enlarged matrices involved in the solutions to multi-
stage games become larger as A becomes smaller. This difficulty is
further complicated by the fact that different partitions of the enlarged
matrices involved in the solution approach different orders of magni-
tude as A approaches zero. It is possible, however, to obtain through

intuition and trial and error the correct orders of magnitude of the

various matrix partitions, and to isolate the first order terms in the
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difference equations characterizing the solution to this problem. These
manipulations are carried out in detail in Appendix B. Since the en-
larged state variables are partitioned vectors, the enlarged matrices
involved in the solution can be partitioned in a natural way. In fact, it
is in terms of these matrix partitions that the first order difference

equations for the discretized game are obtained.

E. The Differential Game

If the solutions to successively finer discretizations of the sto-
chastic differential game originally posed exist and approach a
limiting form as the discretization interval approaches zero, then this
asymptotic solution is taken to be the solution to the differential game.
Although it is beyond the scope of this report to examine rigorously the
significance of the formal solutions resulting from this procedure, it is
appropriate to comment briefly here on the justification for such an
approach.

First of all, it is reasonable to require that any meaningful
solution to this type of stochastic differential game have the property
of being the limiting form of the solutions to an approximating sequence
of multistage games, especially since most such games arise in
practice from situations in which decisioﬁ making and data processing
are actually carried out on a discrete-time basis. Thus, although the

_definition of such a solution could probably be streamlined by defining
some appropriate intermediate concepts, any reasonabllé solufcion

should agree with the formal solution.
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Once a formal solution of this type is obtained, however, there
is still the question of whether it has any reasonable meaning. A good
definition of ''reasonable' here is suggested by the ''K-strategy' con-
cept discussed by Isaacs [3]. Although originally defined for determi-
nistic games, the natural extension of this concept to the present.
stochastic context is essentially the assertion that a player's strategy
is minimax (in the sense of K-strategies) if it is the ''limiting form"
of minimax strategies for this player in games that result from
restricting both players to change control values only at specified
times between the initial and final times, as the maximum time interval
between control changes becomes infinitesimal (but independently so)
for both players, if this limit exists. The limit concept referred to
here means basically that the control histories produced by the mini-
max strategies in the '"restricted" games (called K-strategies) con-
verge uniformly to that produced by the true minimax strategy for
almost all sample paths of the measurements on which this player's
control is based. Heuristically, this means that each player, if he
processes his data rapidly, is applying approximately the correct con-
trol, assuming that his opponent is also processing his data rapidly
(but otherwise arbitrarily fast). When consideration is limited to
strategies that are linear functionals of the measurements, as is done
here, this is equivalent to saying that the piecewise-constant weighting
functions corresponding to the ''restricted" minimax strategies con-
verge uniformly to the weighting function corresponding to the true
minimax strategy.

- Although the rigorous details are glossed over, the K-strategy
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concept is actually the basic motivation behind the analysis used here,
in that the solution to the stochastic differential game is treated as the
limiting form of the solutions to a sequence of games in which the
players are restricted to piecewise-constant controls. This analysis,
however, is carried out in such a way that the time interval between
control changes is constrained to be the same for both players, even
though it becomes infinitesimal. The issue of allowing the maximum

time between control changes to go to zero independently for each

player is ignored, under the implicit assumption that in most cases of
interest this would not affect the asymptotic result. An example of
such a situation would be a case in which the evader is allowed to
change control twice as often as the pursuer, but with the interval
between control changes being infinitesimal for both players. As a
partial justification of this omission, however, it should be pointed out
that such a situation could be modelled in the present framework by
making the pursuer's measurement noise spectral density parameter
infinite at every other time step, and halving it the rest of the time.
Since the payoff is convex in the control, this would mean that the pur-
suer would only change control values at every other time step (when
more information becomes available), whereas the integrated effect of
his measurement noise spectral density parameter in the differential
equations, whose solutions characterize the game solution, would remain
the same.

As is suggested by the preceding remarks, the problem of
determining a solution to the stochastic differential game at hand is

essentially reduced to finding the asymptotic form of the matrix
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difference equations characterizing the solutions to discretized versions
of the differential game. Since these equations are available (to first
order for small A) in partition-by-partition form, where the partitions
are indexed (say by j and k) from 0 to N (which is of order —IA—), it is
helpful to make a modification in notation by referring to the j, k-th
partition of an enlarged time-varying matrix A(iA) as A(iA, jA, kA).

In this way, the partitions of the enlarged matrix partitions become
functions of three variables, each taking on values from 0 to tf (=Na).
This makes the transition to the continuous limit very natural, by con-
sidering the arguments to be continuously varying in the interval [0, tf].
Because of the differences in the orders of magnitude of the various
enlarged matrix partitions, it is also convenient to modify some of the
variables so that all these partitions are expressed in terms of normal-
ized quantities (and A). After these two modifications have been made,
it is fairly siraightforward to obtain the asymptotic equations charac-
terizing the linear solutions to the differential game. These constitute
a system of implicit integro-differential equations. In Appendix C
these equations are derived in detail, and are recast into a neater

form by a suitable redefinition of parameters.
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4. THE SOLUTION

As a result of applying the derivation described in the preceding
section, and carried out in detail in the appendices, it is verified that

a solution to this game can be obtained of the form

r t
- a-lpAT (e
u(t) = -BHUG (1) | A (%, + fO Ap(t,ﬂzp(r)d-r} (17)

vt = -clwaTw A w3 + [ Atz (r)a ] (18
hAL e | e %o 0 et Tz (T)dr )

provided that the parameters Ap’ A, Ap’ and A are "well-behaved"
functions of t and 7, and satisfy a certain system of implicit equations.
These equations, which were mentioned in the previou.s section, result
basically from the requirement that each player's minimax strategy be
a solution to the stochastic optimal control problem which results from
substituting his opponent's minimax strategy into the transition equation

and the criterion functional.

A. The Two Point Boundary Value Problem

A discussion of the meaning and origin of the parameters involved
in this syste£n of equations will be deferred until later. For the present,
this system of integro-differential egquations should merely be con-
sidered operationally as‘a set of equations which must be solved in

order to find a pair of minimax strategies for the stochastic differential
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game. Adopting this point of view, these equations can be decomposed

into a primary equation system, which can be solved independently and

which determines the values of the A's, and a subsidiary equation

system determining the values of the A's, which can be solved given a

solution to the primary equation system. Using the symbols Tp’ T ,

e
Qp, andQ to represent, respectively, G B ng
-1 T,-1

HIR 1H , and H_R_"H_, and suppressing the "t'" argument for
P P P ee e

functions of t only, these equation systems are:

-1.T
GeC Ge’

Primary Equation System

1

- T 'f ) T ,
G =Y TQ +H ft [T (OT (€, 1) =T (A (5, 0] 2,(€)de;
2 (tp) = 5; (19)
t
T rf T
0, =-Y T 2 -H ft [T ()A€, ) =T (T (£, D] 2, (6)dt;
Qe(tf) =S (20)
or (t,7) T f T
—%t—— Yp[Tpr (t,7)-T A (t, 7]+ H ft [[l“p(f,t)-Ae(f,t)] T (§) -
T
[T (6.7) =0, (6,1)] + T (€, O[T (€) -Te(t)]l“p(t,'r)]df;
I‘p(tf,'T) =0 (21)
or (t,7) ol ([T
—Sr— = YT A (6, 7) =T T (6, 7)] + H ft [re(t,t)[Tp(z:)-Te(r)]re(t,m)-

[Ap(r,t)—l“e(t,t)]T Tp(f)[Ap(r,ﬂ—re(f:r)ﬂdt 3 T (teT)=0
‘ (22)
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- n L oo+ [ neoniuon] s onggee
Pp=Tol J Al (1000 |+ fo ASEOM (18)dE | T -PQ P +Q;

Pp(O) = Po (23)

t t T
- T T .
P = —Tp[ fo Ap<t,§>Me<t,r>dr] - [ fO A OM, (tg)dr] T, -P QP *+Q;

P (0) =P (24)
oM (t,T) 1 ‘
3 _ T ‘
——P——St = Te[Ae(t,'T)Re(’r) + fo At N (8,7, C)dt] - P QM (t,7);
_ T
Mp(t, t) = PpHe (25)
oM (t,T) t T
— ~Tp[Ap(t,T)Rp(T)+ fo ALt ON (L, T, g)df] -P QM (t,7);
_ T
Me(t’t) - Per (26)
9N (t, T, 0)
P = -Mg(t, T)QpMp(t, o) ; Np(t, T, t) = Ng(t’ t,T) = Mp(t’ .,-)H:f(,,.)
(27)
9N (t, T, 0)
e ER } o T . B T
— 57— ~~M, (L TIQM (t,0) ; N (t,7,1) = N_(t,t,7)
= M(t,M)H_ () (28)
9K (t,7) t ,
p - - _ :
S T, fo A OL (7, ) -T A (£,7)-P QK (£,7) ;
_ T_-1
aKe'(t,'r) t .
5 = TA T - T fo At OL (4,7, A ~P Q K (t,7) ;
K (t,t) =P _H R (30)
9L (t,7,0)
_ o mY . - uT -1
5t My (t, a)Qpr(t,'r) ; Lp(t, t,0) Mp(t, O‘)HpRp (31)
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8Le(t, T, q) 1

S = =ML (t,00Q_K_(t,7) ; L_(t,1,0) = M_(t, 0)H_R_ (32)
t
A7) =Y K (t,7) + fo Tt L (7, 6)dg (33)
t
A(t,T) = Y K (t,7) + fo T (t, OL (¢, 7, £)dg (34)
te
Y =a + ft T Tt DH ()AL (35)
by
Y =+ Jir., ¢)H (¢)dg (36)

t

Subsidiary Equation System

t

C T 'f T )
m, =Y [T I -TA]+H, ft [T,(6.0-A(6,0]7 T ()[1 (£)-A (O] d;
Hp(tf) = On,n (37)
. t
- : - I e i _ y1T _ .
M, =Y [T A -T 1] -H ft [T (€= (€0]7 T (O[m(£)-A ()] dE;
Mt =0, 1 (38)
Dp =T A, - T,PAP - PprDp ; Dp(O) =1 (39)
D =TA, - TpAp - PeQeDe ; De(O) = In (40)
80 (t,T) T :
‘“‘R——at = ,-Mp(t,—r)Qpr ; Gp(‘c, 1) = Her (41)
8Ge(t,'r) T
——é?-—— = "Me (t, ’T)QeDe ; Ge(t, t) = HpDe (42)

t
_ (4
AT +Y D+ fo T () (8, E)as (43)

t
A_=T_+Y_D_+ fo T (¢, £) 6,_(t, £)dg (44)
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Notice that each of these two equation systems constitutes a two
point boundary value problem, in that some of the boundary values are
specified at the initial time and some at the final time. However, they
are more complicated than the usual type of two point boundary value
problem arising in optimal control theory. First, some of the parame-
ters involved in these equations (such as the I''s and 8's) are functions
of more than one variable. Also, the coupling between the differential
equations is diffused over time, in that the derivatives of some of the
quantities depend not only on the present values of the other quantities
involved in the equation system, but on past or future values as well.
A qualitative diagram of the couplings among the various equations in
these systems is shown in Figure 2.

In summary then, the problem of finding a solution to the sto-
chastic differential game at hand has been reduced to the procedure of:

(a) finding a solution to the two point boundary value problem
consisting of the primary equation system,

(b) wusing this solution to find a solution to the subsidiary
equation system (also a two point boundary value problem),
and

(c) substituting the values of Ap and Ae from the solution to
the primary equation system, and the values of Ap and
Ae from the solution to the subsidiary equation system
into equations (17) and (18).

The form in which these minimax strategies are expressed, as
obtained from this procedure, will be referred to as "Realization I."

It will be shown later how other intuitively more satisfying realizations
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of these same strategies can be obtained. The behavior of Realization I

of the pursuer's minimax strategy is depicted schematically in Figure 3.

B. Interpretation of Parameters

Although it is necessary to follow through the details in the
derivation of the solution in order to really appreciate the 6rigin and -
Signifiéanée‘ éf all the pafameters involved in the systems of implicit
equations characterizing the solution to this game, it is possible to
give straightforward interpretations to some of these parameters.
Denoting the measurement histories {(zp(-r),'r) 1 T<t} and
{(ze('r),'r) rT< t} by Zp(t) and Ze(t), it is shown in Appendix C that,

assuming that both players use their linear minimax strategies,

Pp(t) = cov[x(t), X(‘é)/Zp(t)]* (45)
Pe(t) = cov[:x(:t), x(t)/Ze(t)] (46)
Mp(t, T) = cov[x(t), ze('r)/Zp(t)] _ (47)
Tt
Me(t, T) = qov[x(‘c), zp('r)/Ze(t)] | (48)
Np(t,ch) = cov[ze('r), ze(c)/Zp(t)] . (49)
' , T, 0<t (T+0)
Ne(t, T,0) = cov[zp(v")’, zp(c)/Ze(t)] ' (50)

and that, under the same aSSumption,

t
A A - ) -
2 (1) [Dpxo +f Kplt f)zp(t)dt] = e[x(0)/Z, (0] (51)

*This notation means & [(x(t)- x(t)) (x(t)- i(t))T/Zp(t)] .



*
"FUNCTION SPACE" refers to operations performed on functions of two

variables (which are like infinite~dimensional vector functions of

time only). The net output of this section of the diagram is just

The reason this operation is represented in this somewhat obscure

manner is to illustrate the use of the following function space

t
[OAp(t,u)zp(r)d'r

blocks, which will be used in later figures:

T

SYMBOL INPUT OUTPUT
' t
Xy x(t,7) y(f)f/to‘ A(T,T?x(f,r)dr
x =AMLY | x(1) y(t,T)= A (t,T) x (1)
t
X Y x(t,T) y(t,7)=x(£, %) d§

FIG. 3 PURSUER'S STRATEGY - REALIZATION I
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t
s mnllp 2 ;
% (1) = [Dex0+ fo Ke(t,@ze(t)dr] = €[x(t)/Z ()] (52)
A ] ' i t . jv . ,
2,p(T/0 = | 6,06, 1%+ fo Lt 8,7z (€At | = e[z (T)/Z (1)] (53)
_ " - TSt
2pe(7/t) o _Be(t,‘T)}—io+ fO Le(t, f,'r)ze(t)d't_ = e[zp('r)/Ze(t)] (54)

Thus, these parameters may be regarded as being associated with a
kind of Kalman filter which produces estimates of the current state X
and %_ and the opponents' measurement histories iep.and Epe‘ These
filters, however, are based on the presumption that the opponents are
employing their minimax strategies as defined by equations (17) and
(18). It is shown in Appendix C, in fact, that the "estimates' defined
in equations (51)-(54) can be generated from the available measure-

ments by the following Kalman filter-like differential equations:

. t
a — b A T _1 - -~ .
£ = Gu+TAX +T, fo At g (7/0dT + P H R [z -H & ]
xp(O) =X (55)
9z __(t /1) ,
e = T T "1 s A . 2 —_ ~
_Q“—_at Mp(t,r)HpRp sz prp] ; zep(t/t) Hexp (56)
and
¢ =-Gv-TA % -T ftA (t,72_(r/t)dr + P_H R Y[z -H 2 ];
Xe e ppo pop-’»pe : e e e LTe TeTe!?
xe(O) =X, (57)
9z (r]t)
pe R To-1r, 1 5 1. 5 _ s
5t M, (t,‘T)He R, [ze HeXe] R zpe(t/t) "HpXe , (58)

where again the "t"" argument has been suppressed for functions of t
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only. If it is further assumed that each player is using his linear-
minimax strategy (i.e., those strategies obtained in this report, as
opposed to some other possibly existing minimax strategies), the sum
of the second and third terms in equation (55) can be interpreted as
Ge\“r, where ¥ is the expected value of v given Zp‘ Analogous
remarks hold for the second and third terms of equation (57).

The parameters Ap’ Ae’ Ap and Ae are obviously (from
equations 17 and 18) the weighting functions for the initial state and
the measurements in the minimax strategies. Finally, it can be
qualitatively said that the remaining parameters (the Q's, Y's, I''s,
and II's) are connected with the minimax cost-to-go in the players'
associated optimal control problems, a connection which will receive

no further comment here.

C. Another Realization

Assuming now that a solution has been found for the primary and
subsidiary equation systems, these solutions can be used in
Realization I to implement the minimax controls directly as linear
functionals of the available measurements. These same strategies can
be expressed in a more interesting way, called "Realization II," by
substituting equations (33) and (34) for the A's and equations (43) and
(44) for the A's in equations (17) and (18). These substitutions,
followed by a change in the order of integration, show that the minimax

controls can be expressed as
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[ t
- n-1aT i = -
u=-B G inxO-i-Yp[D x + [ K, (t, C)Zp(f)dt]-l—

Po %
t _ t } )
fOI“p(t,T)[Gp(t,'r)xo+f0 Lp(t, C,T)zp(t)df d’f{}? (59)

and

)

] ] oy )
v = -C 1G§[nego+ye[nexof fo» K (t, C)ze(t)df] +

N

t t
fo re(t,f)[ee(t;f')io+ fo Le(j;’,c,'r)ze(ft_)dr}owjL (60)

Using equatidﬁs (51)-(54), these optimal control laws can be rewritten

as
u = —B‘l(}T[n X +Y & + ft r (t,7)2 ('T/t)d"l'] (61)
PL PO PP o P ep
and
S\ t '
v = -C Ge[ﬁexo+Yeie+j(; l"e(t,'l')ipe('r/t)d’f} (62)

where the pursuer's estimates are generated by equations (55) and (586),
and the evader's by equations (57) and (58). The action of Realization II
for the pursuer is displayed in Figure 4. Remembef that the estimates
produced as a'part of thisl realization can be interpreted as Kalman
filter estimates (i. e., conditional mean estimates) only if the assump-~
tion is made that the opéonents‘ strategies are the minimax strategies
derived here. In actuality, of course, each piayer's opponent is free
to use some other strategy, in which case this interpretation is not
valid. By construction, however, such efforts by either player to
"confuse' his opponent would only result in an overall detraction from

his own expected payoff.
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D. The Certainty-Coincidence Property: Realization III

Realization II expresses the minimax control laws in the more
'familiar form of linear feedback laws operating on estimates generated
by a Kalman-like filter. It should be noted, howex}er, that the estimates
of the opponents' measurement histories used in this realization are
equivalent to infinite-dimensional vectors, the components of which
are indexed by the continuous variable corresponding to the previous
times at which measurements were taken. This feature presents a
éerious difficulty in the implementation of the minimax strafegies in
this form. The certainty-coincidence property, besides being of theo-
retical interest in its own right, provides a way around this difficulty
to a certain extent. This is accomplished by the construction of
another realization of the minimax str‘ateg'ies, designated
"Realization III," in which the infinite-dimensional parts affect only a
set of correction terms, which are produced by deviations of the game
from its deterministic behavior.

The first step in this construction is to notice that the necessary

conditions derived in Appendix C for the noiseless sample path

(equations C69-C72) uniquely determine this trajectory. The name
""noiseless sample path' is used here to denote the trajectory followed
by the game in the event that the initial state is actually ;{o and the
process and measurement noises are all identically zero, assuming
that the minimax strategies derived here are used by both players.
This trajectory, moreover, coincides with the minimax path followed
by the corresponding determinis;tic game, as defined bj equations (1)

and (5)~(7) with x(0) = }EO. “Hence, the name "certainty-coincidence
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is applied to this phenomenon.
Recalling that the matrix S(t) is defined by the differential
equation

S=S[T T IS; St =8,

and substituting the deterministic minimax strategies into the determi-
nistic transition equation shows that the minimax trajectory of the

corresponding deterministic game has the property:

4

57 [Sx] = Sx + Sx = S[T-T,J8x + S[T -T ]Sx = 0, (63)

which implies that Sx is constant on this path. Therefore, on the
noiseless sample path, which coincides with this deterministic
trajectory,

%) = s"Hm)S()x(t) for 0<t,T <t (64)

£
assuming that S_1 exists (which it does unless there are redundant
state variables in the problem formulation).

Furthermore, it can be verified either by a direct examination
of equations (55)-(58), or by the fact that these equations are the
limiting forms of equations for the discrete-time case fqr which these
results are verified in the appendices, that ip(t) = }“ce(t) = x(1),
2ep('r/t) = He('r)x('r), and 'Zpe(v'/t) = Hp('T)X('T) forall 0sT<st<t,

on the noiseless sample path. Rewriting the minimax strategies from

equations (61) and (62) by adding and subtracting identical terms, and

writing SO for S(0), as

t .
_ o-1,T R R ) 1 vas
u=-B Gp {Hp[ x-S, Sxp] + f() I‘p(t,‘r)[zep('r/t) H_(7)S (T)Sxp]d'r+

-1 t -1 o )
[Yp+HpSO S+ fOI‘p(t,'r)He('r)S ('r)d'r}cpj (65)
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and

t
v = _C-lG’:e[’ {He[;{o_sglsﬁe] +J(') re(t’ 7-)[2pe(7'/t)-Hp(’T)S'1(T)Sf§e]d'7'+

t 1
-1 , S -1 "
[Ye+neso s-gfo Fé(t,T)Hp(T)S (T)d"r]xej, (66)

this result, together with equation (64), implies that the first tWo terms
in these'expressions are zero on the noiseless sample path, so that

: .
_ o-14T -1 -1 .
u=-B Gp[YprpSo Sk+f0 I‘p(t,T)He('r)S (T)Sd’l’]xp (67)

and

t ' :
-1,T -1 -1 s
v=-C Ge [Ye+ ,HeSo S+ J;) l"‘e(t, T)HP(T)S (7)S dT:\ X (68)

there.

But, since 5?.0 is arbitrary in the preceding remérks, this means that

B'lGT[Y + 1T
pLP

£
-1 -1 _-1.T
5o s+f0 I‘p(t, T)H (T)S (T)Sd‘T‘] =B GpS (89)

and

. | |
~1.,T -1 -1 _ A=1.T
C Ge[Ye+HpSO s+fO T (t, T)H (7)S ("T)Sd’T]—C G.s  (70)

Therefore, defining the discrepancy variables:

e (8 2 7/ - H (S sz (05 7 <t (71)
et 2 2 (7/1) - H (NS ISz (M) 5 7 <t (72)
h () S %) - SIS0 (0 (73)
n(t) 2 & - s'sz (0 (74)

the minimax strategies can be expressed as
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u= _B'lc;T[s& $I h +ftr (t,7)e (¢ 'r)d'r] (75)
pL™P PP R TR

and

<
l

-1,.T t
= -C Ge [Sie+nehe+fo I‘e(t,'r)ee(t,v')dv'] . (76)

Notice that the second terms in equations (71)-(74) are, respectively,
Ze('T), ze(T), )_co, and }_co on the noiseless sample path, so that the dis-
crepancy variables are all zero on the noiseless sample path, and hence
represent discrepancies between the deterministic behavior of the game
and the behaviors perceived by the two players on the basis of the
available measurements.

In view of these results, the action of the minimax strategies can
be interpreted as follows. At each time, the players have information
equivalent to conditional mean estimates (given that their opponents
are using these strategies) of the current state and their opponents'
measurement histories. The control that each player applies at this
time is determined by the following procedure:

(i) Construct the noiseless sample path (or equivalently, the

minimax path of the corresponding deterministic game) that.

intersects the estimate of the current state.

(ii) Calculate h as the discrepancy between the initial estimate

of the initial. state, >_c0, and the initial state of the above noise-
less sample path (equations 73, 74).

(iii) Calculate the function e as the discrepancy between the
estimate of the opponent's measurement history and the measure-

ment history he would have received on this noiseless sample

path (equations 71, 72).
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(iv) Apply the control which is the certainty—equivalent«control

bas.ed on the eétimate of the current state’, plus feedback terms

on the discrepancy variables h and e.
At the same time, the estimator sections of these strategies update
the estimates of the current state and of the opponents' measurement
histories. | |

It is also possible to obtain for each player a self-contained
system of differential equations determining the estimate and dis-
crepancy variables as functionals of the available measurements.
Concentrating on the pursuer for the moment, equation (55) can be

rewritten by adding and subtracting identical terms as
. -1 t

2 =G u+T [A h +A S 'Sz + [ A _(t,7)e (t,7)dr +
p p el"ep “eo p e p

¢
J A, T)He('r)S—l('r)Sfcpd'r} +PH

TRz -H 2 1; 2(0)=%
0 p

p p PP
(77)

Noting that the noiseless sample path necessary conditions imply that
v=-clgTsx,
e
it follows from equations (18) and (64) that, for any :7;0 ,
clglsx=ctct|a S—1+ftA (t,m)H (T)S_l('r)d'r}Sx (78)
e el e"o o €’ e

on the corresponding noiseless sample path, since Z, = H‘eX there.

Since equation (78) holds for any value of 520 s
1T -1.T 1, 4 S |
cT'G.s=CT'GI|A ST+ [ A (t,7H (1S (m)dr (S, (79)
e e e O 0 e e

Using this result, the estimation equation (77) is equivalent to:
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t
A N T
=G u+T {S +A h+ | A (t t d}+PHR -H 2
xp I_Ou e.Xp el fo ('T)e(’l')T oHp [z pp]
f:p(O) =x_. (80)

Also, from the definitions of the discrepancy variables and equation (75),
: 1 1) t

h = -8 '[% +5% | =S~ Si[TH-TA]h + [[T.T (t,7)-

p o P p o pp e e p 0 pp

-p HY - B
T A, 'r)]e (t,7)dr PpHpRp [zp p b J

hp(O) =0 (81)
and

ge (t, 71 7, T/t
p(, )=azep( /1)
ot ot

1 s aas 1 o -1 .
- H (1)S (T)[SXp+SXp] = H (7)S (T)Sohp(t) +
T T,-1 5 1. _
Mp(t,T)HpRp [zp prp], ep(t,t) 0. (82)

Similarly, the estimation and discrepancy equations for the

evader in Realization III can be obtained as:

. i
8 =-Gv-T [Si +A h +f A (t,T)e (t,'T)d‘T]+P HTR_l[z -H % ];
e e p e pe J P e e e e l%e Tee

fie( 0) = ;(o (83)

. r : t
h =S'lsl,~[T A -T T ]h +f [T A (t,7)-T T (t,'r)}e (t,7)d7 -
e o pp eel e v pp e e e

T, -1 -
P _H_R_ [ze—Hei‘ce]Ji ; h (0) =0 (84)

aee(t, T)

) -1 ; T To-1r. o 1. _
= —Hp('r)S (T)Sohe(t)+ Me(‘c,'r)HeRe [Ze Hexe]’ ee(t,t) 0

(85)
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Again, if the further assumption is made that each player's
opponent is using his linear minimax strategy, the second terms in the
estimation equations (80) and (83) can be interpreted as ‘—Ge\’? and -Gpﬁ,
respeétively, where ¥ and U have the same definitions as before.

To summarize, the pursuer's minimax strategy in Realization III
is determined by equations (75) an(i (80)-(82), and the evader's by
equations (76) and (83)-(85). A schematic representatioﬁ of

Realization III for the minimax pursuit strategy is shown in Figure 5.

E. Remarks

The fact that the controls used in Realization III are the certainty-
equivalent controls plus discrepancy terms which are zero on the noise-
less sample path opens the possibility of constructing quasi-optimal
strategies by replacing the infinite-dimensional discrepancy variables
ey and e by finite-dimensional "almost-sufficient'' statistics. Since
such an approximation would only affect the corrections for noise-induced
deviations, it is reasonable to expect that only a small decrement in per-
formance would result, although the computational advantage gained
thereby would be great, both in determining the feedback and estimator
gains and in the implementation of the resulting strafegies. Quasi-
optimal strategies based on this idea and their performances are under
investigation at fhe present time. |

It ié appropriate to comment here on the certainty—coincidénce
concept as compared to the certaiﬁty-equivalence principle of optimal
control theory, which is instrumental in establishing the former in the

present context. Like the certainty-equivalence principle, the
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certainty-coincidence property implies that the optimal control laws

(i. e., minimax strategies) for the stochastic differential game, if they
exist, will result in the deterministic minimax state and control |
variable histories when applied to the corresponding deterministic
differential game (with z'p = pr and z, = HéX)' Unlike the certainty-
equivalence principle, however, it does not say that the minimax
control laws for the stochastic game can be obtained by using the mini~-
max strategies from the corresponding deterministic game with the
feedback applied to the conditional mean estimates of the current state:
In fact, the stochastic game may have no solution. That is, the
certainty~coincidence property is like the certainty-equivalence
principle going from the stochastic game to the deterministic game,
but different going the other way.

Not much is known at present about the existence or computation
of solutions to the primary and subsidiary equation systems, in terms’
of which the minimax strategies obtained here are expressed. Some
exploratory numerical calculations have been made, however, for a
variety of analogous multistage games (of the type considered in
Appendix A). These computations basically consisted of iteratively
determining the parameter values for new linear strategy pairs by
letting each player optimize against his opponent's linear strategy
determined by the parameter values of the previous iteration. Of
course, if this procedure converges, the resulting parameter values
determine a pair of minimax strategies, practically by definition. The
results of these numerical experiments were that this procedure con-

verged, regardless of the starting values, for parameter values that
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would intuitively give the pursuer a good advantage (such as a high
control cost for the evader relative to the pursuer, or a low measure-
ment noise for the pursuer). For parameter values with the opposite
characteristics, which correspond to the evader's ability to escape
and the non-existence of a minimax solution, this numerical procedure
did not converge. Although these computations were only performed
for a small set of relatively simple multistage (two-stage, to be exact)
games, the indication is that a generalization of this procedure could
be applied to solving the primary and subsidiary equation systems, by

iteratively calculating new values of Ap’ Ae, A, and Ae from old

1%
values, solving for the new values (in equations 33, 34, 43, and 44)
through an application of these equations to the old values. If the
results of the exploratory calculations are valid, then this algorithm
would converge if a solution exists, and its failure to converge would
mean that the evader could escape. (No solution exists of the form
considered here.) The non-existence of such a pair of linear minimax

strategies, however, is not known to imply that a non-~linear solution

does not exist.
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5. CONCLUSION

There are two results of major significance concerning the
solutions to the class of stochastic differential games examined in this
report. First, for conditions under which there are solutions to a
certain two point boundary value problem, there exist minimax strate~
gies for both the pursuer and evader which specify the controls as
linear functionals of the available measurements. It appears, however,
that these strategies are in general infinite-dimensional, meaning that
these functionals cannot be represented as the impulse response
functions of linear networks described by finite-dimensional state
vectors. In view of the construction of Realization II, this difficulty
appears to result from the need for each player to continuoﬁsly esti-
mate his opponent's entire measurement history in order to apply his
optimal control.

Also of significance is the certainty-coincidence property which
applies in this context. This property, which has been shown to apply
for the open-loop game, games in which one player has no measure-
ments (solved by Rhodes [8]), and the class of games investigated by
Behn and Ho [7] where one player has perfect measurements, which
are all limiting cases (but not special cases) of the class of games con-
sidered here, states that the behavior of the stochastic game under the
linear minimax strategies coincides with the behavior of the corre=-

sponding deterministic (closed-loop) game if the initial estimate
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happens to be correct and the process and measurement noises happen
to be zero. This result makes it possible to construct Realization III,
in which the importance of the infinite-dimensional part of the mini-
max control laws is reduced, thereby opening the way for reasonable
approximations to the minimax strategies by finite-dimensional control
laws.

Although the class of games considered in this report does not
contain the types of games solved by Behn and Ho [7] and Rhodes and
Luenberger [8] as special cases, the latter are limiting cases of the
type examined here. Figure 6 displays the relationship among these
three classes of games, which are differentiated primarily on the basis
of the information sets available to the two players. It can be shown
that the solution obtained here reduces to that of Rhodes and
Luenberger when Q = 0 and Rp or Re approaches infinity. (See
Appendix D.) The reduction to the case solved by Behn and Ho is more
difficult, however, and has not yet been achieved.

As a final note, it should be mentioned that the analysis used
here can be applied almost without modification to the case in which
the two controllers of the dynamic system have objectives that are in
complete agreement, instead of in direct conflict. That is, the game
is a completely cooperative one, or alternatively, a stochastic optimal
control problem with a decentralized controller, in this case divided
into two non-communicating parts. The only difference in the result
for such a situation would be some sign changes in the control laws and
the two point boundary value problem. It also seems likely that this
approach could be used for linear-quadratic-Gaussian non-zero-sum

differential games of the type considered by Starr and Ho [9].
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Appendix A
THE MULTISTAGE GAME.

The topic of discussion in this appendix is the multistage pursuit-

evasion game defined by the equations

x(i+1) = x(i) + Gp(i)u(i) - Ge(i)v('i) +&@{H); i=0,...,N (A1)

N-1
J =-§- a{XT(N)SfX(N) + Z [uT(i)B(i)u(i)—VT(i)C(i)V(i)]} (A2)
i=0
z (i) = H (Dx(D) + w (1) (A3)
Ze(i) = He(i)x(i) + We(i) (A4)

common prior is Normal(io, PO)

where Sf, B(i), and C(i) are symmetric and positive definite; and the

£(i)
random vectors Wp(i) are statistically independent,
w (1)
0 Qi) « 0 ! 0
Normal :0: s _0_ _E ~R—p(i_)‘_5 i -0 i s an@ independent of the
0 o ' 0 ! RJ()

prior.
The objective is to find a pair of pursuit and evasion strategies
(UO, Vo‘) based on the available information, such that for any other

pair of such strategies (U, V),
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J(U°, vy < J(U°, v° < J(u,v9 .

Strictly speaking, the strategies under consideration must be limited
to a suitable pair of sets of admissible strategies for which the problem
is meaningful. For our purposes here, it is sufficient to restrict the
pursuit strategies to those for which u(i) is a (Lebesque) measurable
function of io, Po’ zp(O), ce, zp(i)’, and similarly for the evasion
strategies.

The derivations in this appendix require extensive use of par-
titioned matrices. For this reason, it is convenient to introduce the

notation

(A)

i,j
for the i, j-th partition of a partitioned matrix A. Only one subscript
will be used for a partitioned vector, or a vertically or horizontally

partitioned matrix. The notation Ir and 0O will be used to denote

k,q
the r-dimensional identity matrix and the k X q -dimensional zero
matrix whenever the dimensions of these matrices are not clear from

the context.

1. The Solution

Suppose now that the evader uses a strategy consisting of a

deterministic term plus a feedback term of the form

i
v(i) = a (i) + ) A (L iz () - (A5)
J=0
Defining the following sequences of partitioned vectors (all with N+1

partitions of equal dimension):
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{n(i) :i=0,..., N}, called "the past of x(i)," such that for each i

{‘X(j); j< i)

<7r(i>>.={ j; j=0,...,N, (A6)
J x(1) ; j=i

and
{ne(i) :1=0, ..., N}, called "the past of We(i),” such that for each i
w(j); jsi
(ne(i)>-={ © 3 §=0,..., N, (AT)
J 0 ; j>i
it is straightforward but tedious to verify by substitution that, if the
evader uses the generic strategy described by equation (A5), the sto-
chastic optimal control problem facing the pursuer can be expressed

"

in terms of these ""enlarged' vectors by the transition equation:

m(i+1) I-g (i) : -z ()] [ #(i) I‘p(i) I, (i)
R B S e I Y e N R ER O s
n (i+1) 0o v I n(1) 0 o |°
' A8)
Y(i) : 0 £(i)
0, 26) ]| w/(D
the "follower" type of criterion (to be minimized):
A, ' 0] [#N)] N-1
1 N,
7=%¢ ,[WT(M ! nz(N)J R —— }: u T (H)B(iuli) -
} 0 1 0| I,
(A9)
Ag(i) m(i) )
ag“m{n'fm . n:f(i)] - | | [Ae(i) | D(i)] -~ -|+a (1)}
DI (i) e

and the measurements (on the basis of which the controls are to be

computed):
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1 (i)
Z(i)=[®(i)'0]---+W(i)
P p ! ne(i) P

where, for i=0, ..., N-1; and for j, k=0, ..., N;

<1>e(i) is a partitioned matrix such that

P :

'G (DA (LH (k) ; §>1i

()., =< ¢ ¢ ~°° L;
J; :0; j<i (or k>1) J

\I/e(i) is a partitioned matrix such that

G AR >

(g (1), = x
eLK g9, j<1 (or k> 1)

I‘p(i) is a vertically partitioned matrix such that
G () j>1i:

(r @@y, = P
P 0; j<i

@p(i) is a horizontally partitioned matrix such that
H (i) j=1
. _Jp !
O (i), =
CHEDS

[
0 ;j#1iJ
Qe(i) is a vertically partitioned matrix such that

I ;o §=itl]
(Qe(l)>j =" s

0 _; j#i+l]
r,r -

Y(i) is a vertically partitioned matrix such that

I s izt
<Y(l)>]: . . f);

Ae(i) is a horizontally partitioned matrix such that

3
A (1L,PH (G ; j<1i]

(A (ﬂ).:% € € 3;
ey 0 ;j>i

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)
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De(i) is a horizontally partitioned matrix such that
A isi
(D), =y ¢ ;
J 0 ;j>i
and where AN is a partitioned matrix such that

Sf; j=k=N
<AN>j,k={ L

k\Oan otherwise J

(A18)

(A19)

r. ) is defined in the same way as I‘p(i), except that G _(i) is used in

place of Gp(i). As an aid to comprehension, the‘forms of these

"enlarged' partitioned matrices are displayed in Figure Al for the

case in which N = 3.

This formulation of the pursuer's associated optimal control

problem (in which J is to be minimized) is useful because it is of the

standard linear-quadratic-Gaussian type, the solution to which has

been obtained by Joseph and Tou [10], and Gunckel and Franklin [11].

Defining for convenience

I-9 (1) + -w ()
e T ,
e i
: O v Tt
T (i)
p
r (i) ‘é - - s - ]
P 0
L ]."(N"'l),m
i I‘ (i) :
e G (D); j>i
B () &|----- RGOS B
__Or(N+1),k 0 33
- Q) ! 0
R)=|---=~~~--

(A20)

(A21)

(A22)

(A23)
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-Al0-

_AlY® oo
Q@[ =|-------], (A24)
© 0 ! @ ()
e
®.(i) 2 [@ @ ' o } (A25)
p TP 1 g, r(N+1) |’
N B |
Ae(l) = 'lZAe(l) ! De(l)] , and (A26)
A 0
N 1
KN’Q Sl - -} , (A27)
O Op(N+1), r(N+1)

the solution, if it exists, is given by

u(i) = ~ [B(i)+I_‘T(i)S (i+1)T (i)]—1 fT(i){'y (i+1) +
P p P p p
(A28)
3+ 1) (Z, (05, (1) - Ee(i)ae(i)>] :

(i)
where 68 (i) is the Kalman filter estimate for O'e(i) alol. , the
P (i)
state of the pursuer's enlarged system, which is given by

N ey = g =T, .\ o-1,. N = g s
cep(l) = Gep(1)+Pp(1)@p(1.)Rp (1)[zp(1)—®p(1) crep(l)] (A29)

el FO:KNL
cep(1+_1) = ?e(l)oep(l)_l-rp(l)u(l) —,Ee(ll)ae(l); ('O‘ep(o»‘_j = o i NJ
(A30)

where
. —T,. P = e =T, R = ,..1~1 =T, . —_— .
Sp(l) = ég(l)l:I -Sp(1+1)I“p(1)[B(1)+I‘§(1)Sp(1+1)I‘p(1)] I‘g(l)]Sp(Hl)@e(l)

—T — o _ (A31)
-Ae (i)C(i)Ae(i) ; SP(N) = AN



-All-
o =T e e vraen 2 mT e ans (11w Ten |
'Yp(l) @e(l)[l Sp(1+1)l"p(1)[B(1)+]."p (1)Sp(1+1)1“p(1)] I‘p (1)]

[7,(641) -8 (HDE (Da )] - A DCWa ) 5 v, (W =0

(A32)
P (i) =M (i)[z-‘@T(i)[@ (M (DB ()+R_(D] 1 ® m]M (i) (A33)
P P P PP TP p p P
M (i+1) = 3_()P_(1) &L (1) + ©_(DR ()T (1) (A34)
p e p e e e e

The boundary value Mp(O) is expressed by dividing this matrix into

(2N+2) - (2N+2) partitions as follows:.

PO ; j3,k=0,...,N
(Mp(O))jk= R (0); j=k=N+1 j,k=0, ..., 2N+1 (A35)

0 r, T otherwise

It has been established by Kalman and Bucy [12] that the estimate
6ep(i) can be expressed directly in terms of the pursuer's measure-

ments as

1
Bopli) = 8, (1) + j;o K, (1, Dz () (A36)
where

Kp(i+1,j) = [I—Pp(i+1)—@g(Hl)R;l(iﬂ)—@p(iH)] .
[1-1‘ W[ B +TID)S_ DT (O] T L (1)S (i+1)]5 (DK _(1,5) ;
p P p p P P € P

o =T,y ~1,.
Kp(l, i) = Pp(l)@p(l)Rp (1) . (A37)
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5 _(i+1) = [I-P_(i+1)® " (i+1)R_1(i+1)®_(i+1)] -
p p p p p
{[1-? D[BEHT T (D)S_(i+D)T ()] 1 TL(i)s (i+1)] -
- P p p p p P
[2, (D5 ()-E (Da (i)] -
T ()[BT S (1S (1T (1)] 7} T (1) (i+1)} (A38)
p p p p p p
5 (0) = [I-P_(0)®_ (OR-(0)8_(0)]5 (0) .
p p p p p ep
In the multistage case, this result is easy to verify by induction.
Substituting equation (A36) into equation (A28), the pursuer's

optimal control law in this context can be written as

i
u(i) = —ap(i) - jZ’O Ap(i,j)Zp(j) , where (A39)

. ow,=T1. , = ,1-1 =T
ap(l) = [B(1)+l"p (1)Sp(1+1)1"p(1)] 1 I‘p (i) -

['yp(i+1) +Sp(i+1)[56(i)6p(i)—Ee(i)ae(i)]] (A40)

=T e s v 1m 2T e s (o
A (i) = /}([B(l)+l"p (1)Sp(1+1)rp(1)] 3 (1)Sp(1+1)@e(1)Kp(1,3) s jsi

1% 1\0m’q; N=j>i
(A41)

Strictly speaking, the equations determining this control law
constitute a set of necessary conditions for optimality. If, however,
a control law is found which satisfies these necessary conditions

and, in addition, satisfies the convexity condition

['pr(i)sp(i+1)Fp(i)+B(i)] positive definite for i =0,...,N-1;

(A42)
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then, by a standard result for linear-quadratic-Gaussian control
problefns, this is sufficient to guarantee that this control law is optimal.
Conversely, if the pursuer employs a strategy of the form
, ‘ i . :
wi) = -a (i) - ) A (L Dz (), (A43)
% h p p
j=0
an analogous construction and argument can be used to show that the

optimal opposing evasion strategy is given by

1
V(i) =a @)+ ), A LDz (), (A44)
Bt
where
A - [Tg(i)se(m)fe(i)+cm]‘1fg(i)se(i+1)5p(i)1<e(i,j) ;g
© O i N=j>i
(A45)
~a () = [EL (DS (DT, )] T () -
{ve(i+1)+se(i+1)[Sp(i)ae(i)—Ep(i)ap(i)]] , (A46)
and where
5, (1) =7§g(i)[I - Se(i-i-1)fe(i)[C(i)+Tg(i)Se(i+1)f‘e(i)]—l T“;r(i)] .
T
Se(1+1)c§p(1) - Ap(l)B(l)Ap(l) (A47)
S, = Ay,
P (i) =M (i){l-@T(i)[@ HM (DB GE+R (1] 1® (i)]M (1)
e e e e e e e “e e ? (A48)

oy = =Ty L= o =T
Me(1+1) = @p(l)Pph)@p(l) + Qp(l)Rp(l)Qp(l)
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Po; ,bk=0,..,N}
(Me(O))j’k= RP(O); j=k=N+1 j, k=0, ..., 2N+1,

0 9,9 otherwise (A49)

K _(i+1, j) = [1-Pe(i+1)'®z(i+1m;1(1+1)@e(i+1)] :
[I -T(W[COHT, (S (#+DT, ()] Tf(i)se(m)] -
B (DKL) 5 K (i) = Pe(i)'@;fu)ﬁ;l(i), (A50)
and where
7 () = 5’5(1)[1 - Se(i+1)_fe(i)[C(i)+f‘g(i)Se(i+1)f‘e(i)]—1; 1‘?3(1)] :

[”ye(i+1)-Se(i+1)Ep(i)ap(i)] -Kg(i)B(i)ap(i); Ye(N) =0,

(A51)
5 (i+1) = [I—Pe(i+1)@g(i+1)R;l(i+1)_@)e(i+1):l .
{1 - T (D[C@THDS (H+DT ()] 'f‘eT(i)Se(i+1)] :
[Ep(i)ée(i)—Ep(i)ap(i)} . 'fe(i)[C(i)+f;r(i)se(i+1)'f‘e(i)]'1 :
T (i) (i+1)
54(0) = [1-P (008 (R 0B (0)] 5 (0) . (A52)

(i)

Here, the vector cp(i) is defined as {———} , where np(i) is
n (i)

given by P

,Wp(‘i);jsi
(n (1)), = i=0,...,N-1; j=0,...,N.
Pl 0 ; j>i
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The quantities 6pe (the evader's Kalman filter estimate of op), Epe’

3, Tor Tpr O, @, A, D, Ep, T, E, ’Rp, 'ﬁp, ®,, and Rp‘are
defined in exactly the same way as their oppositely subscripted
counterparts in the pursuer's associated optimal control problem,
except that all the ''p" and "e" subscripts in the definitions are inter-
changed, and the dimensions of the zero and identity matrices used in
the definitions are altered by interchanging the parameters "'m" and
"k'", and "q" and "r".

Likewise, if any evasion strategy of the form of equation (A44)
is found which satisfies equations (A45)-(A52) and the convexity
condition

C(i) + T (DS (#+1)T (i) positive definite for 1=0,...,N-1,

(A54)
then this strategy is optimal (maximizes J) against the generic
pursuit strategy assumed in equation (A43).

Therefore, by construction, any pair (U, V) of pursuit and
evasion strategies of the form

i
U: ui) = -a () - jzo ALt Dz () (A55)

i
Vo) =a D)+ ), APz () (A56)
=0
such that the primary system of implicit equations (A31, 33, 34, 35, 37,
41, 45, 47-50), the subsidiary system of implicit equations (A32, 38, 40,
46, 51, 52), and the convexity conditions (A42, 54) are satisfied is a

pair of minimax strategies for this stochastic multistage game.
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These systems of difference equations, when viewed as sets of
implicit equations for determining a minimax strategy pair, each
constitute a kind of two point boundary value problem. These are more
complicated than the usual kind of two point boundary value problem,
however, in that the entire solution to the "M" (or "P'") equation
schemes is a boundary condition for the "K' equation schemes,
although the only externally imposed boundary conditions on the
equation system as a whole are at the initial and terminal times. Also,
there is the difficulty that the dimensions of the parameter matrices
involved in this solution increase in proportion to the number N of
stages in the game. This means that the number of variables involved
in this set of implicit equations increases approximately as N3.

Notice that the primary system of implicit difference equations
can be solved independently, and that 'y'", "a', and "6'" variables can
be taken as identically zero to satisfy the subsidiary system of
equations in the case where 1—10 = 0. Also, the convexity conditions only
involve the solution of the primary system of equations. Since B(i)
and C(i) are positive definite by assumption, these convexity conditions
correspond roughly to the ''no conjugate point condition'' of optimal
control theory. Exploratory numerical calculations have been carried
out for a variety of two-stage games, which indicate that linear
solutions of the type assumed do indeed exist for intuitively reasonable
parameter values, and do not exist for values which would give the
evader a good chance to escape. The non-existence of such minimax

solutions, however, is not known to imply that some other type of

admissible solution does not exist.
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The systems of enlarged state variables previously constructed
can be looked on merely as abstract transformations that result in
solutions of the desired form. It is of interest, however, 1o use the
interpretations developed there to derive some of the properties of
the parameters arising in the solution.

Considering for the moment only the systemacczp)structed for the

7,

pursuer's optimal control problem, and writing POl for 6ep(i), it

fi (1)
is a standard result of the filtering theory developeilpby Kalman [13]
that the vectors #(i) and ﬁe(i) are the conditional expected values of
m(i) and ne(i) given the measurements Zp(i). Partitioning these esti-
mate vectors in the natural way, it follows from the definitions of n(i)
and ne(i) that the last N-i partitions of ﬁe(i) are zero, and that the last
N-i+1 partitions of #(i) have the same value, for all plays of the game,

because the expectations can be decomposed to give the following

results for j>i:
<ﬁe(i))j = el{n 1)/ Z ()] = e[0/Z ()] = 0 (A57)

and

(?r(i))j s[(ﬂ(i))j /Zp(i)] = ¢f é[(ﬂ(i)>j/Zp(i),x(i)] /Zp(i)}

(A58)

e[x(i)/Zp(i)] = (7*zr(i))i
Notice that estimates are continually being calculated not only for the
current values of x and W but for all previous values as well, since
these are also included in the 7 and U vectors.

Under this interpretation, it is also clear that the matrix Pp(i)
is the covariance matrix of the conditional probability distribution of

(i
the random vector {— (— 2—} given the measurements Zp(i). Since this

n.(1)
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distribution is Gaussian, Pp(i), #(i), and ﬁe(i) completely character-
ize it. Again it should be emphasized that the matrix Pp(i) not only
contains the covariances of x and w, at previous times, but also the
correlations between their values at different previous times.
Partitioning Pp(i) in the obvious way to correspond to the partitions of
the 7(i) and ne(i) vectors, it is a consequence of the definition of these
vectors and the fact that Pp(i) is the conditional covariance matrix

associated with them that

(P (i)). ., =0 for j=N+i+2
pik (A59)
or k=N+i+2.

Analogous remarks hold for the variables defined for the analy-

sis of the optimal control problem facing the evader.

2. The Certainty-Coincidence Property

The fact that the associated pair of optimal control problems for
this game are of the linear-quadratic-Gaussian type when expressed in
terms of the enlarged state variables can be used to gain some inter-
esting insights into the nature of the linear minimax strategies. Suppose
for the moment that a pair of such minimax strategies (U*, V*) has been
found that satisfy the implicit equations. Defining

ee(i) = ce(i) - 6ep(i) s (A60)

it can be verified from the pursuer's associated optimal control

problem solution (equations A28-42) that



_A_lg..

('+1)—[1 P (i+1)® L (#+1DR1(1+1)8 (i ] 5 e @-F a2
Eel =|I- p1 )@p i+1) b i )@p(1+1) @e(l)ee(l)-vl"p(l) ;v_(i—)
e
IV EL (s =1,.. . i

+P (i+1) @ _(i+1)R_“(i+1)w _(i+1)

1% P P P (A61)

ee(O) = (X(O)-}_(O) )

Therefore, if this pair of minimax strategies is used and the initial
error, the process noise values, and the measurement noise values
for both players-are all zero, then (—:-e(i) is zero for i=0,..., N~-1.
An analogous argument shows that the error €p(i) for the evader's
cbrresponding Kalman filter for op(i) (the equations for which have
not been listed) is also identically zero under these circumstances,
so that Gep(i) = oe(i) and Gpe(i) = op(i).

Furthermore, the certainty-equivalence principle for linear-
quadratic-Gaussian optimal control problems, as applied to the for-
mulation of the pursuer's associated ’optimal control problem in terms
of the enlarged state variables, implies that the pursuer's minimax

strategy U for the stochastic game, with the formal substitution of

ore(i) for 6ep(i) is optimal in the corresponding deterministic game

defined by
x(i+1) = x(i) + Gp(i)u(i) - G ()v(i) 5 x(0) = :';o (A62)
1).T N2l p T
Ty = x (NS + _ZO (TwBEu@-vT@OCEv) (A63)
1=

&
against the evader's stochastic minimax strategy V , with the substi-
tution of He(i) x(i) for ze(i). The certainty-equivalence principle ap-

plies here because the evader's measurement noise appears as
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process noise in the enlarged system constructed for the pursuer's

associated optimal control problem. Analogously, V , with the formal
substitution of op(i) for Gpe(i), optimizes against Uq‘, with zp(i)
replaced by Hp(i)x(i), in the same deterministic game. Labeling these

deterministic strategies as

. : -1
U’ u(i) = —[T‘E(i)Sp(Hl)f‘p(iHB(i)] :

fg(i)[vp(i+1)+Sp(i+1)[ge(i)ce(i)-Ee(i)ae(i)]] , (A64)
1
U uli) = -a (9 - j;o AL, DH (), (A65)
-7 — -1
V' ovii) = [re (i)Se(i+1)I“e(i)+C(i)]
_g{ve(iﬂ)+Se(i+1)[Se(i)ap(i)—Ep(i)ap(i)]] , (A66)
i
V" ov(i) = a (i) + }_j A (1, DH (D), (A67)

j=0
this means that in the deterministic game
7 (U, V") < J (U, V") and (A68)

Jd(U", V') = Jd(U", V) (A69)

for any other pair of deterministic pursuit and evasion strategies (U, V).
The strategies expressed by equations (A64) and (A65) result from
applying the certainty-equivalence principle to equations (A28) and (A55),
respectively; and similyarly for the strategies V' and V'’ defined by

equations (A66) and" (A6 7);
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Moreover, on the noiseless samg_le path in the stochastic game
(x(O) =x

* %
playing the stochastic minimax strategy pair (U ,V ) can be expressed

Wp(i) = we(i) = (i) = O), the control histories resulting from

O’

either as

1
uli) = -a () - ), AL DB (o ()

=0
i
(= -a,{d) - 2, AL, j)Hp(j)X(j)> (A70)
and
i —
v(i) = a (i) + jgo AL, D8 (o ()
1
(= a (i) + ) Ae(i,j)He(j)X(j)), (AT1)
3=0
or as
N lj—T. A s .]'1
u(i) = - rp (1)Sp(1+1)1‘p(1)+B(1) ’
ff(i)[«/p(iﬂ)+sp(i+1)[58(1)06(1)—Ee(1)ae(i)]] (A72)
and

-1
v(i) = {:fg(i)se(i+1)fe(i)+C(i)] .
f‘e(i)['ye(i-i-1)+Se(i+1)[5p(i)cp(i)-Ep(i)ap(i)]] , (A73)

since O’ep(l) = O‘e(l) and Gpe(l) = crp(l), as was shown earlier in this
section, and zp(l) = @p(l)Ge(l) and Ze(l) = @e(l)O’p(l). Furthermore,
the state variable history in the stochastic game is given in terms of

these control histories as

x(i+1) = x(i) + Gp(i)u(i) - Ge(i)v(i); x(0) = 5;0 (A74)
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under these circumstances. Therefore, playing any one of the strategy
pairs (U, V"), (U', V'), (U", V"), or (U",V'") in the deterministic game

results in the same trajectory, namely the noiseless sample path of the

* %
stochastic game under the strategy pair (U ,V ).

As a result, in the deterministic game,
! 1y = royny = - -
Jd(U , V) Jd(U , v Jd(U", v Jd(U”, vin. (A75)

This result, together with the preceding inequalities, shows that U"
and V' are minimax strategies for the corresponding deterministic
game. Therefore, the noiseless sample path of the stochastic game
under the stochastic minimax strategy pair (U*, V*') coincides with the
deterministic minimax path followed by the corresponding determi-
nistic game under the deterministic minimax strategy pair (U", V"').
Since this noiseless sample path is a deterministic minimax path, it
must satisfy necessary conditions that can be derived for minimax
paths in the corresponding deterministic game. Such necessary con-
ditions are uéled later to determine some interesting properties about
stochastic minimax strategies, but this procedure is not employed at
this stage since the real interest here is in differential games, and
since the necessary conditions are very messy for the multistage

game.



Appendix B
THE DISCRETIZED GAME

Before deriving the equations for the discretized game discussed
in section 3B, it is convenient to divide the enlarged vector and matrix
variables involved in the solution to the multistage game into major
pa‘r"citions, ih acéordanée with the partitioning of o and g as F’”—]
and [ﬁw_} . Using the well-known fact that the "S," "P,"” and "M"
matricgs are symmetric, this leads to the partitioning of the "S," "P,"

"M," and "K" matrices as

S, ! S 5() Sepll) 'S o0
N O e el PR RO e R (B1)
50900 | S 3() B SN TG
Ppl(i): sz(i)_1 FPel(i) :Pez(i)
P()=|-=--=1---=-|, P)=|-==op=-=-=-], (B2)
P T 0 . e T .\ .
P‘p2(1)I PpS(l)g LPez(l) . Pogli)
M, (D)1 M o) ] [ M (0) 1 M o(0)
M ()=|----rF-=---, M@=l----r=----|, (B3
d MI(5) ' M © ML (i) ' M ()
p21'| »pSl)_J L’ e2't | Mestt)
K, (i) Ky (i)
K@= --~- |, K =] ---| (B4)
sz(l) Kez(l)
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and the partitioning of the '"y'" and "¢" vectors as

vpl(iW

v (i) =]~~~
P vpz(i)_
6p1(i)“

5 (i) =|~---

p .
Sp2{l) ]

where

, ve(i) =

, 5, (1) =

(YD)

-, (BS5)
L“/ez(l)
r‘Sel(i)

i (B6)
_6e2(i)

Spl(i)f’ Sel(i)’ Ppl(i), Pel(i)" Mpl(i)‘ and Mel(i) are

n(N+1) X n(N+1) - dimensional matrices,

SHPCINS SRNCHE
matrices,

Seali), Py,
matrices,

S,3(1), Pgld),
matrices,

S.5(1), P gi),

matrices,

and MpZ(i) are n(N(1) X r(N+1) - dimensional

and Mez(i) are n(N+1) X g(N+1) ~dimensional

and Mp3(i) are r(N+1) X r(N+1) - dimensional

and Me3(i) are g(N+1) X q(N+1) -dimensional

Kpl(i) is an n(N+1) X g-dimensional matrix,

sz(i) is an r(N+1) X gq-dimensional matrix,

Kel(i) is an n{N+1) X r-dimensional matrix,

Ke2(i) is a q(N+1)» X r-dimensional matrix,

'}’pl(l), 6p1(1), ’Yel(l),. and 681(1) are n{N+1)-dimensional vectors,

'sz(i) and 6p2(i) are 'f‘(N+1)—dimensional vectors, and

Yez(i) and 6e2(i) are ¢(N+1)-dimensional vectors.
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The solution to the multistage game examined in Appendix A can
be expressed m terms, of the partitions defined b;y equations (B1) - (B6).
Using the equations obtained in Appendix A, it is just a matter of
computation to obtain the minimax strategies as

i

u(i) = -ap(i) - & Ap(i,j)zp(j) (BT)

i
vil) =a () + ), Az (j) (B8)
=0
where the parameters are determined by the primary and subsidiary

systems of implicit equations. The primary system of equations,

when expressed in terms of these matrix partitions, is:

A . s T . =1 T
Spl(l) = [I-rbe (1)] [I-Spl(1+1)]."[3(1)[}3(1)+I‘p (1)Sp1(1+1)1”‘p(1)] I‘p (1)] -

Sp1 (D2 (D] ~ A{DCHDA M) S,,(N) = A (B9)

N
I : R, % : -1 T
sz(l) = [I—<I>e(1)][I-—Sp1(1+1)1"p(1)[B(1)+]."p (1)Sp1(1+1)1‘p(1)] I‘p ()]

[Sp2(1+1)—Sb1(i+1)\1;e(i)] - AT(CHD (1) ; SppM =0 (B10)

o . LT, . LT, =l .
Ppl(l) = Mpl(l) _Mpl(l)®p(1)[@p(l)Mpl(l)GpA(l)-FRp(,l)] ®p(1)Mp1(1)

(B11)

o . R AP . NI AP 1—1 . .
sz(l) = Mpz(l) -Mpl(l)@)p(1)[®p(1)1\/1p1(1)®p(1)+Rp(1)] ®p(1)Mp2(1)

(B12)

L o T T LT -l .
Ppg(l) = Mp3(1) Mp2(1)®p (1)]®p(1)Mp1(1)®p(1)+Rp(1)] @p(l)MpZ(l)
| (B13)
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My (i+1) = [I-2, (D] [P (-2, (D] - P_,(i)u_ (D)] -
2 (D[P o (DII-8, (0] - P_gi)e] (0)]+ YORMWY T (1) ;

(Mp1(0)>j’k =P ;

o 1k=0,...,N (B14)

Mp2(1+1) = '[I—@e(i)]sz(i) - \Ize(i)PPS(i); Mp2(0) =0 (B15)

- R (0); j=k=0
M a(i+1) = P o) +2 (DR (DR (1) (M (0); ) =4

; i
;Or,r otherwise

(B16)
. o T,. -1,. . . .
Kp1(1+1, i) = [I-Pp1(1+1)®p (1+1)Rp (1+1)®p(1+1)] [[I—@e(l)]Kpl(l,J) -

. . . . . . oy T =1,
\Le(l)sz(l.,J) -,l“p(l)Ap(l,J)] ; Kpl(l,l) —Ppl(l)@p(l)Rp (i)

(B17)
e . T . T, -1, .
Kp2(1+1,3) = sz(l,]) - sz(l-!-l)(@p(1+1)Rp (1+1)@p(1+1) .
[[I’Qe(i)]Kpl(i:j) -\Pe(i)Kp2(i,j) - I‘p(i)Ap(i,j)];
o 2T o Ty =1,
sz(l,l) = sz(l)@p(l)Rp (1) (B18)

o T . =1 T, . : .
Ap(l,J) = [B(1)+l"p (1)Sp1(1+1)1"p(1)] I‘p (i) [Sp1(1+1)[I—<I>e(1)]Kpl(l,g) +

[sp2(1+1)ésé‘1(i+1)\Ife(i)]sz(i,j)]

0,4 i §=i+l, .., N
" (B19)
S, (1) = [I-q;.g(i)][1-;81(i+1)re(i){C(i)+r§(1)sel(i+1)re(i)]'1 T -
Seq (i1 {I-2 ()] - Ag(i)B(i)Ap(i); S, (N) = -Ay (B20)
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8 ol = [I-cbg(i)_] [1-S , (1T (D[CEHTT (DS (i+1)T (] W] -
[S,p+1)-S i D)g ()] - Ag(i)B(i)Dp(i); S.,(N) =0  (B21)
P_ () = M_ () - M_ (e (e (M _, ()el ()+R_(1)] ™ e _()M_, (i)
(B22)

P_y(i) = M_y() - M, (DO (D[O ()M (DO (IHR (1] ™! @ ()M,
(B23)

P gD = Mg - M_, (007 ([0 (M, (DO (+R (0] ©,()Mp(0)
(B24)
M_ (i+1) = [I-e_(D] [P (DII-5" (D] - P_, (el (D] -2 ([P ,(iI-2 (1) -
el p el p e2' " "p p e2” p

P glie; ()] + YHRMWY ()

(Mel(O))j =P, 1k=0,.. N (B25)

Mez(i+1) =[-8, (D]P o)) - ¢ (P40 ; M, 4(0) =0 (B26)

. . . . T . RP(O); J7i=0
M g(it1) = P a(1) + 2 (R (i+1)62 (5) ; {Meg(OD; = 0 otherwise
“aq.q

(B27)
K, (i#1,]) = [I-Py (+1)@] (DR Hi+1)@ (i+1)] [[I-2 (DK, () -
2 (K p(1L9) - LA LD]; K y(Ld = P 0o ORI
(B28)
Kogl+1, I = Kopliu) - Pop(# 1) (+DRC (1)@, (D [[1-8, (K g (1.3) -

(DKL) - TAA LN Kplid) = Pr(e (R
(B29)
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AL = | [CERT S (DT M]T T () [S,  (+DI-2 (K, (L) +

[Seo(i+1) =S, (i+1)w (DK (1))

0 if j=i+1,.., N
L n,r . '
(B30)

The Sp3 and SeS equations turn out to be superfluous. The subsidiary
system of implicit equatiovnvsh can be expressed in terms of these par-

titions as:
I P L v =1 T
7p1(1) = [I—@e(l)] [I—Sp1(1+1)I“p(1)[B(1)+I‘p (1)Sp1(1+1)rp(1)] l"p (1)] -

(71 (H#1) -8 (DT (D2 (0] - A CWaD; 3y =0
' (B31)

oy . T,. -1,. . N
6p1(1+1) = [I—Pp1(1+1)®p (1+1)Rp (1+1)®p(1+1)] [[I—(De(l)]épl(l) -
2, (D5 ,()-T (Da (1)-T (Da D]
i : T -1 —
6p1(0) =1 Ppl(O)@p(O)E’»p (0)®p(0)]7rp(0) (B32)

L W LT T, -1,. . . .
6p2(1+1) = 6p2(1) —Pp2(1+1)®p (1+1)Rp (1+1)@p(1+1){[1-§’e(1)]6pl(l) -
. . oo g , : I : -1
\I'e(l)(Spz(l)—re(l)ae(l)-Fp(l)[ap(l)‘[B(1)+rp (1)Sp1(1+1)1“p(1)] .

Tiw (1011, _oT (meTor-] 7 (0) =
T, (1)7p1(1+1)]], 5,9(0) = P o(0)@_(OR_T(0)® (0)7 (0) = 0
(B33)

RSP, ) . (-1 T : . , o
ap(l) = [B(1)+I“p (1)Sp1(1+1)1“p(1)] I‘p (1){’Yp1(1+1)+Spl(1+1)[[1-§e(l)]6p1(1)

T ()8 o(D)-T (Da ()] + sz(iﬂ);ép?m] (B34)



B
Yoy (D) = [I-cpg(i)] [I-Sél(m)re(i)[C(i)+r§('i)sé(1+1,)re(i.)]"1 rgif:f)][ve(iﬂ) -
Seq (DT Ma (1] - AZMBWa (1) 74, =0 (B35)
5,,(i1) = [I-P_, (i+)@_ (DR (i+1)© _(i+1)] [[1-2 (D6 o, () -
B0 60 - T Da (D) - T (Da (];

5,,(0) = [I-P_ (00 (OR_1(0)0_(0)] 7_(0) (B36)

6 o(i+1) = 5_ (i) —sz(i+1)@E(i+1)R;1(i+1)®e(i+1)[[I-cbp(i)]éel(i) -
2, (D)8 o()-T (Da_()-T (D)fa (D-[CHHT DSy (DT 0] -
r’ (i)vel(i+1)]];

)

02(0) = P5(00_ (OR_ (0@ (017 (0) = 0 (B37)

a,e(i) = [C(i)+1"g(i)Sel(i+1)I‘e(i)]—l Fg(i)[yel(iﬂ)+Se1(i+1)[[1-q>p(i)]561(1) -
\yp(i)ée2(i)—r‘p(i)ap(i)]+Sez(i+1)éez(i)] (B38)

The 6p2 and 6e2

vexity conditions can also be written in terms of these partitions as

equations also turn out to be superfluous. The con-

[B)+T L (i)s (DT (1)]
p P P positive definite for i=0,...,N-1,
[cMTl (DS, (H+1T ()] (B39)

Finally, it is convenient for future use to obtain the Kalman filter
equations for the pursuer's and evader's associated optimal control
| pli) 70
problems in partitioned form. Using | 3z - Q for & (i) and | ="~ -
Tept!) €p 0 (i)

- ep

for aep(i), the equations for the pursuer are:
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(@) =7 () + Pm:(i)@g;i)R;l(i)[zpu)-@p(iﬁrpm] (B40)

r ) = (-2 (0] 7 (1) - (D () + T (uld) - T (Da (i) ;
(7rp(0)>j =X

or

- . _ . . T,. . -1 T, . _
7rp(1+1) = [I—l"p(l)[B(l)+1"p (1)Sp1(1+1)1"p(1)] I"p (1)Sp1(1+1)] .
. A~ . Py A . o . T . . . -1
[[I—@e(l)]wp(l)-\Ize(l)nep(l)] —l“p(l)[B(l)+1“lo (1)Sp1(1+1)1“p(1)] :

D (D (#1481, (D] - To(Da ()

(B41)
A (1) =1 (1) +PL@He DR Dz ()-0 ()7 (1)] (B42)
ep ep p2 p P p PP
Bep(i+1) = ﬁep(i); (Bep(o»j =0 (j=0,...,N) (B43)

and the equations for the evader's Kalman filter can be expressed as:

7 ) = 7D + P (DO (DR D]z _(D-6 ()7 _(1)] (B44)

Te(it1) = [I-2 (D] (D) - g (D7 () - T (Dv(d) - T (Da (0; {7 (0)); = x,
or
7 (i+1) = [I-T_(WIC@+T ()S_, (+D)T ()] 11 ()S_ (1+1)] -
[[1-8 (D] # (-2 (D, (D] - TO[CEHT (DS (+DI W] -

T, LD 7g, (#1148 (1A (D] - T (Da (1)

(B45)
Aol = 7o () + P00 (DR, D2 ()-0, ()7 (1)] (B46)
Noelit1) = A1, () 5 (e (00); = %, - (B47)
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Now consider the discretized game developed in the "Derivation

Outline' section:

x((i+1)A) = x(iA) + [Gp(iA)u(iA)—Ge(iA)v(iA)]A + [E(ia)A] (B48)
. T . ON-1
T =3 eqx (NA)SxNA) + ), [T (1A)BAEA) -v T (1A CEAV(A)] A
L i=0
(B49)
zp(iA) = Hp(iA)X(iA) + Wp(iA) (BSO‘)
z (1) = H_(iA)x(iA) + w_(ia) (B51)
where
§(ih) 0 Q(>iA) 0 0 ']
P . PR A, o 1
:NE(iA.) are independent Normal _0_ , _(i N l_%Q(-u—S)_ ) ‘(i ) "
w (i) 0 0 0 R (iA)

random variables, and the common prior is Normal(io, PO). Since
this is a special case of the multistage game examined in Appendix A,
its solution can be obtained immediately from that of the more general
multistage game by making the following substitutions in the solution
presented in Appendix A:

i—-iA

Gp(i) - AGp(iA)

Ge(i) - AGe(iA)

B(i) ~ AB(iA)

C(i) = AC(in)

. 1 .
Rp(l) => Z Rp(lA)
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R (i) —’lR (iA)
e Ae

Q) ~ +Q(ia)a®
Once this is done, it is possible to use the definitions of the @,
T, 2, I', ® A, D, and Y matrices (see Appendix A) to express the
solution in terms of the subpartitions of the enlarged variables. That
matrices are divided into

is, the Sp S P P M and IVIe

17 Tel” " pl’ " el” Tpl’ 1
(N+1)X(N+1) subpartitions of dimension n X n, corresponding to the
N+1 partitions in the 7 vector; and the other enlarged variables are
partitioned into (N+1) X(N+1) subpartitions (or N+1 subpartitions in

the case of vector variables, or variables defined in Appendix A as
vertically or horizontally partitioned matrices) of the appropriate
dimensions.

Since the real objective here is to obtain first-order equations
for small A (and hence large N), it is convenient at this point to
determine which terms in the subpartition equations are of first-
order significance, and which are of higher order, so that the latter
need not be computed. This procedure is not altogether straight-
forward, however, the difficulties being caused by the fact that the
number of indices being summed in the subpartition equations is of
order N =%> , which becomes infinite as A approaches zero, and by
the fact that the various subpartitions are of different orders of magni~
tude as A = 0. It has been possible, though, to find the orders of
magnitude of these subpartitions that are consistent with the equations
they satisfy, mainly through a procedure of trial and error. The

result is that the ''S" subpartitions are of order Az, the "K' and "y"
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subpartitions and the "'A" matrices are of order A, and the "P" and "'&"
subpartitions and the "a'' vectors are of order unity, with the following

exceptions:
(ypl(i));N is of order unity,
<Sp1(i)>N,N is of order unity,
<Sp1(iA)>j,N = (Spl(iA))'lg’:i is of order A; j=0, ..., N,

(sz(lA))N’j is of order &A; j=0, ..., N,

]

(P_,(iA)). . is of order l, i =0, ..., i (because it contains the

covariance of the evader's measurement noise),

and similarly for the evader's parameters. The "M'" variables are
incorporated into a system of difference equations in the '""P" vari-
ables, and are therefore not used explicitly. The orders of magnitude
of the pursuer's ''S" and "P" matrix subpartitions are shown in
Figures Bl and B2.

With this result in hand, and defining 6(i, j) as the Kronecker
delta function:

(15 i=j

8, 3) =
L0; i#j.

e i

and U(i) as the unit step function:

f1; iz0”
U(i) =4 "

0; 1<0,

it is straightforward but tedious to calculate the first-order subpar-

tition equations as the following:



~ ORDER A

B -ORDER UNITY

Sy (iA) S, (i8)
TR
-
ORDER A2 N ORDER &
N
N
N
3

7
L

ORDER A% W ORDER 12

Sp(id) S5 (i)

FIG. Bf PARTITION MAGNITUDES — S, AND Se MATRICES
(DISCRETIZED GAME)



B — ORDER —

Py (ia) P, (i)

i+
= PARTITIONS —

| ORDER UNITY_ | ORDER O___
UNITY

|

i+ :
PARTITIONS , ‘ 1T —
- | ORDER UNITY

|

" UNITY
| L l
py(iA) P, (i)

FIG. B2. PARTITION MAGNITUDES — P, AND R, MATRICES
(DISCRETIZED GAME)
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Primary Equation System

(Spi(iA)}J. K= (S 1((i+1)A)). k—{HZ(jA)Ag(iA,jA)C(iA)Ae(iA,kA)He(kA)+

(a_ZlH(S ((#+1)8)), )Ge(iA)Ae(iA,kA)He(kA)+Hz(jA)AZ(iA,jA)-

N
G_(a) ), (s 1((i+1>cx>>a]£{+( ), (8,1 (1)), >G(1A)-
a=i+1 st P

1
“Lia)g (JA)( ). (S ((1+1)A)>B k)f A
B=it1l

Sf; ji=k=N

0 othervvise} (B52)
n,n

<Sp1(NA)j,k=

<spz'(m))j i = (Spa(Er DAY, | - | HZ(jA)Ag(iA,jA)C(iA)Ae(iA,kA) +

( RGNS >Ge(iA)Ae(iA,kA)+Hg(jA)Arer(iA,jA)-
a=i+1

G (iA) Z (S M+, | ( ), (8, (DAY, )Gp(jA)-

a=it+l o=i+1

n,r
(B53)

1T 7 ] _
B (1A)Gp(m)(621+l<sp ((i+1)A)) k) A sz(NA) 0

[
(Ppl((i+1)A)). K= (P (iA)). - «i (P (iA)_). .HT(iA)R-l(jA)H SliA) -

k.

(P L(8)); | +U(j-1-1)G (i) Z AHA, al)[H (aA)F (GA)) , o+
a=0 ’

(P oliANy 1+ Ulk-i-1) Z (P, plia)); o+ (B (A, H ()] -

Ag:(iA, aA)Gg(iA)} A +UG--DUG--DQUAN; (P (0); | = P

(B54)
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<Pp2((i+1)A)>. k=(P 2(1‘A)>. L(Jp (1A)) H (1A)R (JA)H (m)

(P oliA); | + UG-i-1)G (1) Z A (A0 [H (aAXP H(A)) , o +
=0 ?
| ¢ "

(Pp3(iA))a,k]j A (sz(o)>j,k =0, (B55)
(Pps((i+1)A)).,k (P 3(1A)>J " (P 2(11_\.)} Hy (1A)R Lia)m (m)
(P 2(1A)> A + R ((1+1)A)6(1+1 3)6(1+1 k) ;
{1 (
R (0); j=k=0
Pgon, =15 ° } (B56)
i\ Or . otherwise

(Kpl((i+1)A,jA)>k = (Kpi(iA,jA»k - {(Ppl((i+1)A))k’i+1Hg'((i+1)A) -

~1,,. . PA . . A s
Rp ((.1+1)A)H.p((l“l‘l)A)(Kpl(lA,JA)>i+1 + U(k-i~1) Gp(ﬁ)AP(Q,JA) +

i ]
G (ia) } Ae(:‘A,jA)[He(_aA)(Kpl(iA,jA))a+<Kp2<iA,jA)>a]}> A

a=0 y
s _ . T avg -~ 1
<Kp1(]A,]A?>k = (P, (80 ;H, GAR (A) (B57)
(K (1A JA), = (K PliA,JAN, - (B, (1+1)A)>1+1 1 Tirna) -
Rp ((i+1)A)H‘p((i+1)A)(K (18,3A)), 8
(K pliA,ia), = (P 2(1A>>1 ka(]A,)R L(ia) (B58)

“LaayaTin) Z, Z (S, (DAY, LK, (A,1AY) 5 +
P a,pB B
A iA) =/ =i+l B=0

Aplia] (8,5 1IAN,, o(K (14,580 ]

0 if N=2j>i

(B59)
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[

(81 (AN = (Soy (1A, | = VHI(GAIAS (A JA)BUA)A (A, KAVH (KA) +

N
- : . ToavaTin Ay .
(aczi:ﬂ <Se1((1+1)A>>j,a> Gp(lA)Ap(:A,kA)Hp(kA).g-Hp (JA)AP(IA’JA)

N N
G GA) ), <Se1((i+1)A)>a,k+( ), (Sel((iﬂ)A))j,a)Ge(iA)’
o=it+l a=it+1

-1 T N )

CTAGGA) | ), (S, (DAY, [
B=i+1

(-S;; j=k=N]

(81 MNAN =4 t e [ 550)
“ Yan O erw1sej \

: _ . U N U . .
(Sez(JA»j,k = <Se2((1+1)A)>j,k - igHp(JA)Ap(&,JA)B(IA)Ap(lA,kA) +

N
' ] i T A ToA
(a;m <Sel“l+m’>:iﬂ) GpUAM (18 KA) +H (A)A, (1A,5A)

T N
G _(ia) ), (Sez((i+1)A))ak+(

N
o L ), <Se1(‘i+1>A)>j,a)Ge(1A)'

a=i+1

n,q
(B61)

N M
C-l(iA)G;F(iA)( Z (Sez((i+1)A)>B k) } A (Sez(NA)) =0
B=i+1 ’ J

(Pel((i+1)A))j,k = (Pel(iA))j’k - {(Pel(iA))j’iHZ(iA)R;I(iA)He(iA) .
i
(P,1(18); | + UG-1-1)G (14) ZO A4, ad) [H (aAXP (1A)) | +
a:

i
(Pez(iA))E,a] + U(k-i-1) 0;0 [(P,plia); o+ (Pel(iA))j’aHg(aA)] .

Ag(m,aA)Gg(m)} A + U(j-i-1)U(k-i-1)QA)A ; <Pe1(0)>j,k= P,

(B62)
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(Pez((i+1)A)>j,k = <13(;3"’2(-1A)>j’k - {<Pel(m)>j,iHE(iA)R;I(iA)HeﬁA) :

1 :
(Poi8); | + U(-i-1G (A) 20 A (18, @B)[H (@A) (1A)) , \ +
a:

<Pe3(m)>a,k]} A (sz(O))j:k =04 (B63)

(Pa((i+1)8)) = (Pyglid)), | - (PpliA)]  H (AR (A)H (A) -
. 1 . . . .
(Pez(lA»i’kA + X Rp((1+1)A)6(1+1,3)6(1+1,k) ;

1o gy
—IZ R (0); j=k=0
ds L 0 otherwise (B64)
9,9

(K ((+1)A,jA), = (K (AjA)), - {(Pel((ﬁl)ﬁ\))k’i_*_l HZ((1+1)A) .
R;I((i-%—l?A)He((Hl)A)(Kel(iA,jA)>i+1 + U(k—i-—l)[Ge(iA)Ae(iA,jA) +

1
G (i8) Y Ap(iA,jA)[Hp(aA)(Kel(iA,jA»a"' (Kez(iA,jADa]}}A:

a=0
. _ . T, =1
(Kel(m,]A))k = (Pel(lADk’iHe(lA)Re (ia) (B65)
(Ko (DA AN ~(K 5 (18,18)), - (Pez((i+1)4))£l,kHZ((Hl)A)

~1,,. . CA s
R ((H+1DAH (HDAXK (A,38));41 A5

T gt

. -1,.
ik e(lA)Re (ia) (B66)

(K _o(if 18)), = (P_,(iA))

N N
cHiaaTia) I (5o (DAY, (K, (18,380 5+
o=l =0
P <Sez((i+1)A»Q,B(Kez(m:w)g)
Aglia j4) = s
Ok,r if N2j>1

L (B67)
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Subsidiary Equation System

(518N, = (v (GHDA)), - {HZ(jA)AE(iA,jA){C(m)ae(m +

N N
G, Tia)y Y (v o1 (1+1)A))‘} { L (8, (DA, -\[Ge(iA)ae(iA)+
o

o=itl =i+1 _
N
TS DR : . ) _
G,(18)B7(1A)G (i) B;ﬂ (7p1((1+1)A))B} fA’ vy (MNAY; =0, 4

(B68)

(6,1 (DAY, = (6 (1A)), - (P, 0y, o BT (EDAR:H(E+DA) -

31+1 p
H ((i+1)A)(6 (iA)>i+1 + U(j-i-1)[Gp(iA)ap(iAHGe(iA)ae(iA)]}A

(5 (0)> =X (B69)

(69U 1)AY, = (8 5(i8)), - (P 2((i+1)A)>;I;1,j Hg((iﬂ)A)R;l((iﬂ)A) :

Hp((i+1)A)(6 (1A))1+1 <<sp2(0)>j = or’1 (B70)
1 - N N
a (iA) = BT (iA)G, (i) _Z {<vp1((i+1m>>a+ 2 (<Spl((i+1)A)>a/, g
o=i+1 B=0
(apl(m»B + (sz((iﬂm))m B<5p2(m)>3ﬂ (B71)

. T, o nTyen . . :
(vel(m» <Y ((i+1)A)). ‘{Hp(.]/—\)Ap(lA,JA)[B(JA)ap(lA)+

a=i+1 a=i+1

N N
Gy Taay Yy, (y 1((1+1)A)>} { )i (Sgy(tina), MGp(iA)ap(iAH

G (ia)C” (1A)G (ia) 321+1 (7 “lﬂ)A»B]}A; (e MNA); =0, 4

(B72)
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(801 (1A = (5 (AN, - (B (G+1AY, ;) HE(+DAR;HEDA) -

H(#1)AXS (AN, 1 + Ul-i- DG (18)a (ANG (i)a (iA)]) A
(89(00); = %, (B73)

(8¢ ((i+1)AY); = {6,5(iA)), - (P 2(<1+1>A)> HL ((G+D)AR]H(+1)A) -

i+1,j

Ho((HDAKS (18);,, A5 (8 62(o)>j =0, 4 (B74)

4 N N
a_(i8) = CTH(1A)G_ (18) Z+1 (v (GFDAY) + (<Se1((i+1)A)>a,B :
=1 =

| B=0 |
(8,1 (AYg + <Sez((i+1)A>>a,B<6€2(5A)>B)} (B75)

To first order, the convexity conditions that constitute part of the

sufficient conditions for this discretized game are that the quantities

N ‘
B(iA) + GL(iA) ( ) Z (8,1 (AN, 5 ) G (in)A (B76)
P a=i+1 B=it+l ’ P

d
an . N N
CHA) +G_GA)[ ), ), (S, (G+1)A)) | G (ia)A (B77)
=i+l fB=it+l

be positive definite for i =0, ..., N-1. As A approaches zero, these
conditions are automatically satisfied by the fact that B(i) and C(i) are
positive definite, providing that the solution to the primary equation
system is asymptotically well behaved. It should be noted that it is
reasonable éo expéct that this proviso not hold in situations where the
corresponding deterministic game has a closed-loop conjugate point
(the evader escapes), since a degradation in information seems to be

in the evader's favor (see the ""Problem Statement' section).
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It is also straightforward to verify that the minimax strategies

corresponding to these parameters can be expressed as:
i
u(ia) = -ap(iA) - Ap(iA,’jA)zp(jA) (pursuer) (B78)
i=0

and

1
v(iA) = a_(iA) + ), A _(iA,jA)z_(jA)  (evader), (B79)
j=0

and that the Kalman filter equations can be written in terms of the
subpartitions as:
(’7‘rp((i+1)A))j = <7rp(iA)>j - U(j—i-l)[Ge(iA)ae(iA)-Gp(iA)u(iA) +
i ‘
) Ge(m)Ae(iz_\.,aA)(He(a4)<%p(iA)>a + (ﬁep(iA»a)] At
a=0

. T (s =11 : . .
(13p1((1+1',sA))j,i+1 H, (AR (+1)A) [z ((1+1)8)-H ((i+1)A)

A EHDAY ]85 (B (0), = %, (B80)
s _n , T T -1 )
(nep((1+1)A))j = (nep(m»j +(Poo((i+DAN 4§ Hy (AR ((1+1)A)

[zp((i+1)A)—Hp((i+1)A)(7*rp((i+1)A)>i+1]A; (?;ep(0)>j=or,1 (B81)

(7 (DA, = (7 (8)), - UG-i-1) [Gp(iA)ap(iA)+Ge(iA)v(iA) +
1
20 G (A)A (A, a8) (Hpmﬁt)(’*’e(iﬁ*)>a+<ﬁpe‘im>aﬂ A+
a= 2
(B (1A 1y HO(GHDARZH(E+1)8) 2 (1+1)8)H (+1)4) -

(A (DaN,, 1as o), =%, (B82)
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(AN, = G (A, + (Bey(+DAN

[z ((+1)A)-H _(G+1)AXT (1+1)A)),, 14 ; <w‘7}_3e(o)>j=oq,1 (B83)

T,,. -1,,.
i H_ ('(1+1)A)Ré ((i+1)A) -

The deterministic game corresponding to this discretized

stochastic game is described by the equations

x((i+1)A) = x(ia) +[Gp(iA)u(iA) - G iA)v(ia)]a; x(0) = ;';0 (B84)

and
1.T Nl T
J=3x (NA)SENA)+ 3 Y (0T (A)BGAINGA) v (1A)C(A)v(iA) ) 4
170 (B85)

where the pursuer and evader can measure the state exactly. The
calculus of variations can be employed in the usual way (as in Ho,
Bryson, and Baron [6]) to derive necessary conditions for the
trajectory followed by this deterministic game (i.e., the state and
control variable histories) when the players use minimax strategies.
Although these necessary conditions weren't stated for the more
general multistage game examined in Appendix A because of their
algebraic complexity, they can be more succinctly expressed to first

order in this case, for small A, as
u(ia) = -B_l(iA)Gg(iA)S(iA)X(iA) (B86)
v(iA) = -C_l(iA)Gz(iA)S(iA)X(iA) (B87)

S((i+1)A) = S(iA) +SEA)[G, p(iA)B‘l(iA)GrIE;(iA)—Ge(iA)C_l(iA)Grg(iA)]S(iA)A ;

S(NA) = Sf
(B88)

From the results obtained in Appendix A on the certainty-coincidence

property, these necessary conditions must be satisfied by the noiseless
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sample path followed by the discretized stochastic game when the pair

of minimax strategies determined to first order by equations (B52-75)
are used by the pursuer and evader. Since this is true for all
sufficiently small A, the limiting form of these necessary conditions,
as A goes to zero, must be satisfied by the noiseless sample path
corresponding to the limiting form of the minimax strategies, pro-
viding these limits exist. Since the solution to the differential game is
treated as such a limiting form of strategy pair, this result will be
applicable to the minimax noiseless sample path in the differential

game.



Appendix C

THE DIFFERENTIAL GAME

The solﬁtion to the stochastic differential game originally posed
is obtained by taking the limiting form of the solution to the discretized
game of Appendix B as the d‘iscvretization interval A becomes infinitesi-
mal. With an appropriate redefinition of variables, this approach leads
quite naturally to a characterization of the (1inear) minimax strategies
for the differential game in terms of a system of implicit integro-
differential equations with split boundary conditions.

As is suggested by the remarks made in section 3E of this report,
the next step in solving the problem at hand is to obtain weighﬁng

functions Lp’ Le’ a_, and a, SO that the linear strategies det'ermined

pJ
by them,
t ———
u(t) = —ap(t) - f() Lp(t, s)zp(s) ds
and
t pu—
v(t) = ae(t) + fo Le(t, s)ze(s)ds ,

are the limiting forms, in the sense mentioned earlier, of the mini-
max strategies for the discretized game. This means that Ap(iA, iA),
Ae(iA,jA), ap(iA), and ae(iA), when considered as step functions with
continuous arguments, should converge uniformly to these weighting

functions as the discretization interval approaches zero. Such
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weighting functions are characterized by the system of integro-
differential equations that results in the limit as A - 0 from the
system of first-order difference equations characterizing the solution
to the discretized game.

Before passing to the continuous limit, however, it is convenient
to make some modifications in the notation for the discretized game
solution. First, instead of referring to matrix partitions such as
<A(iA)>j,k’ a new matrix function A of three arguments will be defined

as

AlA, 8, KA) = (AGA)), | .

In this way, all three arguments range over the interval [0, tf] as i, j,
and k take on values from 0 to N, no matter how fine the discreti-
zation is. These arguments will be considered continuous variables in
the continuous limit. Second, the equations will be written in terms of
normalized variables in order to avoid the impulse functions that would
otherwise result in the asymptotic formulas from the inclusion of
terms of varying orders of magnitudes.

These two modifications are incorporated in the following defi-
nitions, where j and k are indices taking on integer values from 0
to N:

T (i8) £ G (A)B™H(A)G, (iA)

s A1 . .

{1»g

A 1 : o

oAy A1 : _ :



-C3-
E 504, jA) éjﬁ(sz(m’N,j
SIS ESCINEN) N
P (A, 38, k) B(P 1 (A)); |
Poolis, 38, kA) B (P () |
Boglit, 38, 18) S(P (AN, - X 60, UG-DR, ()
K1 (A, 38, kA) £ £ (K, (A, jA)),
K 20A, 38, ka) & g (K oA, 80,
L (4, 38) %—2—\ A (i, jA)
15108, 38) S Xy GAY ; §#N
von(8) 2y ;AN
5,108, 38) £ (5, (1A)).
8,0, §8) £ (8 p(i)
Q(iA) & HY(18) R_1(A) HA)
and an analogous set of definitions for the corresponding variables in

the evader's associated optimal control problem.
Using this modified notation, the equations defining the lifiear
minimax strategies in the discretized game (equations B52-~79) become

in the continuous limit (suppressing the ''t" argument for functions of
‘, g g

""" only):
P’rimary Equation System
: T te
S =18 .+ E-.{,0d4dE T IS .+ E _(t,8)dgj; & t,) =8
on = [S,n ft o1 T[S { o1 (BT 8 (b)) = S,

(C1)
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9E__(t,7) x |
157 [T =T T, | 't
—BL - LHe(T)Le (t,7)G_ +(Ep-1(t,'r)+ jt Spl(t,T,C)dC)Tp_} :
_ b
spN+{ Epl(t,l;’)dt} OByt =0, (C2)

dE ,(t,7) t : t '
p2- "’ _ f.T f
o {SPN+ t Epl(t,f)d§j| {Tp(Epz(t,'r)+ { sz(t,tn')d§> +

GeLe(t,T)} ; Epz(tf’ T) = On,r (C3)

89S 1(’c,'7',o')

s = HL (ML (5,7 CL (t,0)H (o) + HL(NT_ (t,G] -

t t
T ; f :
{Epl(t,ow f1£ Spl(t,t,cr)dt} + [Em(t,m { spl(t,v,xs)dc]
_ tf
GeLe(t,o)He(c)+ {Epl(t,7)+{ Spl(t,T,g’)dC] Tp .

EL (¢ )+ftfs (t,g,0)d¢| ; S_.(t,7,0) =0 (Ca)
pl ,C A pl :§:0 g i pl f,T,O' - n,n

9S_o,(t,7,0) t
27 f T T, T
— P - [Epl(t:rn ft spl(t,r,c)dc] G L (t,0) +H_(L_(t,7) -

o

) |
Cie(t,a)+G§(Epz(t,o)+{f spz(t,g,o)dgﬂ +

—

—

e '
LEpl(t,vnft Spl(t,v',?;‘)deTp‘:Epz(t,c)+{ spz(t,g,o)dt];

sz(tf, T,0) = On,r (C5)



-C5-

9P 1(1:,':',0) . , ; . ot . ,
—RL g By (6T OQ P (6t,0) - UlT-0G, fo L (tO[H (P (t,¢,0)+

t
P 5(t,0,8)Jd¢ - Ulo-1) [ [P o(tm )+ P (6 OH_(0)] -

—_ T ) _ :
Le(t,t)(}e de ; Ppl(O,t, o) = P (Cs)

8P ,(t,7,0)
_p2 "

t
st = P (LT.OQ P ,(1,t,0) Q-XU(T—t)GZ{_Ee(t,c)Re(b)+ fO T (%) -

[He(C)sz(t,C:G)+Pp3(t;§:o‘)]d—§\J M sz((), T, U') = On;r

(CT7)
oP 3(t,'r,cr) T E -
—P—-—-—at = —sz(t,t',.T)Qpsz(t,’t,G); PPB(O,T,O") = Or,r (C8)

oK (t,'r,o)
_pl >

5T = -Pp1(t,o,t)Qpr1(t,7',t) - U(o-t) -

t
[Gpr(t,'rHGe [ Le(t,t)[He(’:)Kpl(t,'r,E)+Kp2(t,7,§)]d§];

_ T -1
Kpl(t, t,0) = Ppl(t, o, t)Hp (t)Rp (t) (C9)
8K 2(t:T:O-) T T T '1
_p2 ) -
T sz(t,t,o)Qprl(t,T,t), sz(t,t,c) sz(t,t,q)HpRp |
\ (C10)

{ t
- 1T £
L (t7) =B Gp{[spmft Epl(t,g)dg} Koy (t7.t) +

t ' t
f T f
fo (l:Epl(t,v)+{ spl(t,c,v)dg’] Ko (L7) +
t
£ 1.
{Epz(t,v)+£ sz(t,f,v)df} sz(t,'r,vadlf(;, tzT

Lp(t,’r) = Om,q; t<T <t (C11)
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An analogous set of equations for the evader's corresponding variables
is also part of this equation system, the only differences being the
interchanging Of HBH and ”C”, Hp!! and He!l, Hml! and ”k”, l!qH and llrll’

~and the boundary condition SeN(tf) = —Sf .

Subsidiary Equation System

t t
__ [ f T f ;
va —[Sprft Epl(t,f)dt} {Geae‘FTe(va’Lft vpl(t,r)dfﬂ ;

Yontte) = 0y 4 (C12)
v _,(t,7) \
1 LT T T f
—B = HI (ML (t,7) [Cae"‘Ge (va+ jt vpl(t,c')dtﬂ +

t

t
£ £ ]
[Epl(‘c,v'Hf1E Spl(t,'r,’;’)dt] [Geae+Tp(va+{ vpl(t,t)df)} ;

Ypl(tf, T) = On,l (C13)
96 1(1:,'r) ‘
_—L——at = —U('T—t)[Geae+Gpap] - Ppl(t,'r,t)Qpépl(t,t);
5p1(o, T) = io (C14)
86 2(t,‘r) ‘T
—L—~at = —sz(t,t,'r)Qpépl(t,t); 6p2(0, T) = On,l (C15)
a =B-1GT'r +ftf (t,0)d¢ +| S +fth (t,0)de| s . (t,t,) +
p ptiN . TPl pN" 4 Tp1” p1'f
ftf EL (¢ )+ftfs (t,€,v)de| 6 (t,v)+
O pl ,v t pl Jr’v pl ’v
te )
{Epz(t,v)+{ sz(t,g,v)df} 6p2(t,v)>dvj (C186)

and an analogous set of equations for the evader's corresponding variables.
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The linear minimax control laws are given in terms of these new

parameters as:
t

u=-a - fo L (t,m)z (1) dr (C17)
and
t o
v =a + fo L’e(t,'r)ze('r) dr (C}8)

. . A . - A A . A I3 . A *
Defining 7rp(1A, ) = (np(lA))j and nep(LA, ja) = (nep(lA))j for the
discretized game, and similarly for the evader, the Kalman filter

equations become in the continuous limit:

ot _(t,T) to_
_%C__ = -U(T-t) {Ge ae—c;rpu+f0 GeLe(t,t)[He(f)v*r(t,t)+ﬁep(t,§)]d§] +
P (6,7 HHIR [z ()-H % (1,0];
pl>” »"pTp Vp pip Y’
#(0,7) = ;'co; 0<7 <t (C19)
an_ (t,7) ? :
ep ' _ T To-1r. 11 & . -
5 —sz(t,t;r)HpRp [zp prp(t,t)]:, Neplts t) = 0 (C20)
o (t,7) t_
—E— = ;U(T—~t)[Gpap+Gev+pr0 Lp(t,f)[Hp(Qwe(t,C)+npe(t,§)]d§] +
P_ (T OH.R [z -H_# (tD]; # (0,1 =% ; 0<7<t,
(C21)
and
s (t,7)
———P-—— P (tt'r)H R_ [z H A (E0] At =0. (C22)

It is stralghtforward to verlfy by substitution in equatlons (C2) -
(C 5) that if a solution to the prlmary equation system exists at all,

then a solution is available of the form:
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T o _ ;
Epl(t,v') = Epz(t,r)He(T), 0st,7Tst (C23)

and

Spl(t,'r,o) = sz(t,'r,c)He(c); 0<st,r,ost (C24)

£
Likewise, a solution is also available under these circumstances with

the additional property:

R R .

Eel(t,'r) = Eez(t,r)Hp('r), 0<t,7s te (C25)
and

Sel(t,‘r,cr) = Se2(t,'r,0')Hp(0') ;. 0<t,7,0 tf. (C26)

Henceforth, only solutions of this form will be considered.
From the symmetry of the "S" and "P" matrices in the discre-

tized game, it follows by definition that
P .(t,7 o)=PT(t0'r) P (t,7 a)=PT(to”r)
pl 3 2 pl 3 2 3 el " 3 el 2 3 2
P (t,7,0) = PL(t,0,7) , P_.(t,7,0) = P L(t,0,T)
p3 2" s p3 3+ 3 e3 PR eB F R | >

_ ol _ T
Spl(t,T,c) = Spl(t,o,'r) , and Sel(t,'r,o) = Sel(t,o,'r) .

It is also of interest to note that, since by the definition of the enlarged
state variables,

E

(6T = & (4t = e[x(t)/Z (0] = % (1) (c27)

and

Aepttm) = elw (m)/Z ()] =0 (C28)

forallt< 1< tf, where Zp(t) denotes the pursuer's measurement
history up to time t, and since_ for all possible measurement histories

(for any 0 € 7 < tf):
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t o
7 (6T) = 6p1<t,7)+f0 K (68,7 2 (6)dg (C29)
and
t
Rep(tsT) = 6 5(t,7) + jo sz(t,g,ﬂzp(g)dg , (C30)

it is necessary that

6p1(t,’r) (t tf) 0stsT< te (C31)
6p2(t,'r) = 0 ; 0stsT< tf s (C32)
(t 0,7) = K (t O',tf) ;. 0<os<tsTs< tf: (C33)
and
sz(t,O‘,T) =0; 0So<tsT<St. (C34)

These observations can be used to simplify the equations charac-
terizing the minimax strategies. Defining the new variables (where t,

7, and ¢ are in the interval [0,t.]):

t
A f
%0 = B0+ f f B ,(t7)dr,

(1) 2 - ff () dr

2

A te
T (&)= E o) + ft Sop(ttmde; T <t,
T (t,7) 2 g o(t,T) - ff S.olt.em)dE; T st

A - -
Kp(t;T) = Kpl(t:T)t) - Kpl(t:T:tf) )

3

A = .
Ke(t:T) = Kel(t:T)t) - Kel(t:'r:tf) > TSt

A
Lp(t,‘T,O') = sz(t,'r,cr) + He(c)Kpl(t,'T,c) ;. T,o<t,
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A
Le(t,T,cr) = Kez(t,'r,o) + Hp(o)Kel(t,'r,c); Tost,
A
P@{)=P (1),
p( ) pl( )
A
Pe(t) = Pel(t: t: t) s
M (47) 2P (7 H () + P (4t7); TSt
p £ pl 2V e pz ER ] 2 2
M (t'r)éP (ttT)HT('r) +P  (t,t,7); T<1t
e F] el Yy p 62 P 2 3}

A T o
N (t7,0) = H (1)P (67 ,0)H, (0) + H ()P o(t7.0) +

T T )
sz(t,o,'r)He (c)+Pp3(t,’r,o) ; T.ost,

A T
Ne(t,'r,cr) - Hp('r)Pel(t,T,cr)Hp (o) + Hp('r)Pez(t,'r,a) +

T T )
Pez(t,o,T)He(c) + Pe3(t,7,c) ;) T.0oSt,

t
A £
Ap(t,-r)=[SpN(t) +ft Epl(t,C)dC] Ky (6,7t +

ftf ET (¢ +ftfs (e ALK (t,7,v) dv +
A ol V) A 1 M bl ,T,v)dv

te te |
fO[Epz(t,v)-i-ft sz(t,t,v)dt]sz(t,'r,v)dv; T<t,

and

t
Ae(t,-r)é —[SGN(t)+ftf Eel(t,t)dt] K, (t,7.t) -

tel T te
fo Eel(t,v)+ft 841 (5, V)AL | Ky (67, v)dv -

t t
j(; {Ee2(t,v)+ _{ f Sez(t,ﬁ’,v)df} Kez(t,'r,v)dv; T<t,



-Cll1-

the primary equation system can be expressed in terms of these
quantities. This is accomplished by straightforward substitution in the
original primary equation system, the use of Leibnitz's rule for differ-

entiating integrals, and the expression of Epl(t,t) (for example) as

, t. oF (g’ t) t, OFE (f t)
- f “p1t>e £
B (61 =E, f dg = - f ———95?— dg .

'The;resulting equation system is:

9.

T
e

{Q

ar (t,7) te
B - Q + ft T (6 OH (€)dE | [T T (4,7)-T A (t,1)] +

f [T, (OT(6.0-T (AL, IR p(£)dE +

"O
s

+
"'"g“-a-

f . -
Tp(t,f)He(E)dC] Tpﬂp, Qp(tf) Se (C35)

ot

Hei\]t [T(€.0-A(€.0] T (OF (¢4 (€] +

b

T L ae; = 0. ,
I, (t,t)[T;pm—Te(r)]I‘p(c,ﬂé df; I(tp7) =05 OsT<t

t t T
o T T ]
P = Te[ fo Ae<t,c>1v1p(t,5)d§] + [ fo Ae<t,c>Mp(t,c>d§] T, +Q-PQF ;

p P
Pp(O) = go (C37)
5T = Te Ae(t,T)Re(7)+fO Ae(’c,t)Np (t,'r,t)dq - PprMp(t,'T) s
T

0s7<t; M(,t)=PH (C38)
P p e
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aN (t,7,0) T
—2_ = M (6,Q M (t0), 0<7,0<t;

ot
Np(t, T,1) Np(t, t,7) Mp(t, T)He('l’) (C39)
oK (t,T) t
—B— =T, fo ASLOL (4,7.0)dE - T A (t,7) - BQ K (t,7),
0<sT<t; K(tt=PHR! (C40)
p PP P
9L (t,7,0) T
E=. \<.. < M
—p———-—————at Mp(t,G)Qpr(t,T), 0 T,0< 1
T -1
Lp(t, t,o) = Mp (t, cr)HpRp (C41)
0 —HTftf[T (OA _(£,)-T (O (¢,0]2_()dg -
e~ Hp ) OB )-T L(€.0]2 (©)dg
t
f . _
[Qe+jt I‘e(t,f)Hp(t)dC} T Q.; 2t)=5; (C42)

ar (t 'T) .tf .
5t = Ijﬂe + j Pe(t,f)Hp(C)df] [TpAp(t,’T)-TeFe(t,'T)] +

t
T (f!{pT T ]
Hp { {I‘e (C,t)[Tp(C)—Te(f)]Pe(f,ﬂ—[Ap(t,t)wl‘e(f,t)] Tp(f)
]
[Ap(g,ﬁ—re(g,rr)]j d¢; T (t,7) =0, 0<7<t, (C43)

. 3 ) T . T ) .
P,=Q- _Tp[ fo A (8 OM, (t,t)df} - { fo A (50 (t,mr] T, = PQF,;

Pe(O) =P (C44)
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SM (t T) t T
—= Tp[ p(tTIR (1) fo A (N (t,'r,t’)dt’] - PQM(t,7),
. = T
0 t<t; Me(t,t) Per (C45)
aNe(t,'r,c) T
— 5 = -IV.[e (t,'T)Qe,Me(t,c) , 0<sT,0%5t;
N (t,7,8) = N (t,t,7) = M _(,7)HL (1) (C46)
e 2 3 e E 2 e 3 p
9K (t,7) t
5t =Tl - Ty f J A 0L (t,0de - PQ K (1,7),
0Tty K (1) = PeHTR 1 (Can)
8Le(t,'r,0') T
—5r— = M (L,aQ K (t,7), 0<7,0<t;
L (t,t,0) = MY (t, 0)H R_1 (C48)
e e’ e e
As a consequence of these definitions, it also follows that
te ¢
A7) =19 + [T (oOH (0)de|K 4,1+ [ T (0L (t,7,8)de; T<
) = 92 jt S(LOH (OdE K (t,7) fo JBOL (47,0)dE s T <t
(C49)

and

. t t
A _(t;7) = [Qe+ ft f Fe(t,t)Hp(ﬁ)d§t| K (t,7) + fo C(LOL (t7,0dE; 7 <1,
(C50)

The. subsidiary equation system can also be simplified by making the

definitions:

A s
= + , t,8)d
7,2 { (ISUAILNS
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A Y
RACE AR R AU

A

8,(1) =8, (t,t) = 6, (t,ty)
a -

6 (1) =8 _,(t,t) =6 _,(t,ty)

A .
Gp(t,'r) = 6p2(t,7) + He(T)épl(t,T) ;. 0SS TSt

6 _(t,1) 6 y(t,7) + H(1)6,,(tm); 0<T<t
A t te
a (1) v (0 + { Vo (6L {Spm“)* ft Epl(t,§>df{| 6oy (tity) +
t T te
fo {[Epl(t,v)+ft spl(t,t,v)dg] 6 (tv) + {Epz(t,v)+

£
£
ft sz(t,f,v)df} 6p2(t,v)} dv

t t
a (t) & -v_(b) - ftf vy (t,6)ag - {SGN(t)+ftf Eel(t,t)df] 6oy (tity) -

t t
T f
f() [Eel(t,v)+ft Sel(t,f,v)df} 6e1(t,v)dv -

1 t
jo [Eez(t,v)+ftf Sez(t,t,v)dg’} 8 o(t,v)dv

Similar manipulations can be performed on the subsidiary equation
system to produce a simplified version thereof in terms of the
variables just defined. Noting, however, that the resulting equations
are linear in these variables, given the solution to the primary equation
system, and that the boundary conditions are proportional to ;{o’ a

solution is sought of the form:



-Cl5~-

V1) = I (0%

Vlt) = I_(t)x

6p(t) = Dp(t);co

8 (1) = D_(t)x

ep(t;r)‘ = @p(t,rr)io

Ge(t,'r) = @e(t,'r))_co

’ap(t) = Ap(t)i(') -

a (t) = A (tx
Further substitution shows that a solution of this form is obtained if the
following equation system is satisfied:

t

t
o £ ) T (f } T,
m, = [Qp,+{ rp(t,f)He(r)dr] [ToH,-TeA ] + Hy ft [ (€. 0-A(8.1)]

T O[M(©)-A (O)]de; () =0, (C51)
Dp ='TeAe - TpAp - PprDp; Dp(O) = In (C52)
BIC) (t,'T) T
—L = S TSt =
5t Mp (t,'r)Qpr, (VIR S @p(t,t) Her (C53)
. tf
n = [ne+ ft I‘e(t,f)Hp(f)dE] [T AT 0] -
; |
T f T =
H { [To(e.0) = A (6D]7 T (O[I ()-A (O]dE; T (k) =0,

(C54)
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D =TA, - TpAp -PQ.D,; D0 =1 (C55)
80 (t,7) T
—5r = —Me (t,T)QeDe , 0s T1t<+t; @e(t,t) = HpDe (C58)
where
te t
A= np+[szp+ ft Pp(t,rme(r)dr} D+ fo T (oo, (tLode  (C57)
and
te P
A= ne+{ne+{ I‘e(t,f)Hp(C)dE:] D, + jo I_(t,£)®,(t,£)d . (C58)

The minimax control laws, when expressed in terms of these new

variables, are:

. ‘
u= —B“ng{Ap}_:O-!-j(; Ap(t,v')zp('r)d'r‘J (C59)
and
o, - L
v=-CTG {Aexo-i- fO Ae(t,’T)Ze(T)d'r] . (C60)

As a further consequence of the definitions of these new variables,
it should be noted that the following interpretations can be made,

assuming that these minimax strategies are employed:
Pp(t) = cov{x(t), X(t)/Zp(t)]
Mp(t,'r) = cov[x(t), ze('r)/Zp(t)]; 0sT<t
Np(t,'r,cr) = cov[ze('r), ze(o)/Zp(t)]; 0< 7,0t
Pe(t) = cov[x(t), X(t)/Ze(t)]
Me(t,T) = cov[x(t), zp(T)/Ze(t)]; 0<TS<t

Ne(t,'r,cr) = cov[zp('r), zp(o)/Ze(t)]; 0<T7,05t.
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Also, the Kalman filter estimates can be expressed in the following way:

t

(t) =% (1) = D (Ox_ + j(; K (t,1)z () dT (C61)
A T t
2 () S % _(t,t) = D _(H)x_ + fo K (t,7)z (7)dT , (C62)

(T/t) Ho(n (4,140, (6,7) = @ (t,1)x +f L,(t.8,mz (g, (C63)
(7/t> H (D (4,1 +# (t,7) = ©(t,7)X +f L (1,£,7)z ()dE.  (C64)

The differential equations for the Kalman filter estimates just

defined can be obtained from equations (C19)-(C22) as:

o7 (t,t,)
fip=—EaT-——Gu+T Ax+jA(t'r ('r/t)d'r
| T . -
PH R - =x_, C65
PP P [Z Ho%pls  %p(0) =%, (ces)
L e (L) R A
R == —Gev- Tp Apxo+f0 Ap(t,’r)zpe(T/t)d'r +
T,-1 s 1. = _ =
P H R, [ze-Hexe] ; xe(O) =X, (C66)
02 _ _(1/t) o (t,7)  on_ (t,7)
= = 4p ’ ep ’ -— T -1 - A .
ot H (1) T 5t I\/Jﬁp(’t,'r)HpRp [zp prp],
zep(t/t) = He(t)xp(t); 0<7<t, (C87)
and
92 (7/t) om (t,7) aﬁ' (t,7)
pe _ e pe " _ AT To-1. 17 25 1.
ot H() —57—+ — 75t M, (NH R [z, -H X ]

’ipe(T/t) = Hp(t)fge(t); 0<T<t. (C68)
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Finally, the necessary conditions for the minimax trajectory in
the corresponding deterministic game, given in the discretized case by

equations (B84) and (B86)-(B88), become in the continuous limit:

u = —B—ngSx , (C69)

-c‘lc;;f’sX , (C70)

&
Il

X = Gpu - Gev ; x(0) =x (C71)

o 2
and

S = S[T -T 1S5 Sip =5, . (C72)

The necessary conditions given by equations (C69)-(C72) must also be
satisfied by the noiseless sample path of the differential game when the
linear minimax strategies given by équations (C59) and (C60) are in
effect, since the differential game is treated as the limiting case of the
discretized game. It is reassuring that the necessary conditions for the
noiseless sample path obtained by this analysis agree with the established

solution for the corresponding deterministic game as given by equations

(1) and (5)-(7).



Appendix D
A LIMITING CASE

In Rhodes and Luenberger [8] it is shown that the solution to the
game in which there is no process noise (Q = 0) and the evader has no

measurements (Re = ) is given by:

- - “1 T - EN
u=-B Gp [Dfip—l-(S D)Xe] (D1)
and
v=-claTsz (D2)
e e
where
£ =Gu-Gv+MHR [z -H &]; 2(0) =% (D3)
p p e -p P p PP P o
%, = [Te-Tp] S%.; %,(0) =x_ (D4)
S = S[Tp=—Te]S; S(ty) = S, (D5)
D= DT D; D(t) =S, (D8)
= ~MQPM; M(0) = Po (D7)

and where Tp, Te’ Qp, and Qe are defined as before. This solution
is the same as that obtained from the solution derived in this report

by formally letting Q = 0 and Re =, as is shown below.

1. The Evader

Looking at Realization III, it is clear from equations (84) and (85)

1

that, since R; = 0, the driving terms are zero and hence he =0 and
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e, = 0. FProm equation (83), therefore,

$ =-Gv-T.S% ; 2(0)=%_, (D8)
e e p e e o}

where S is given by equation (D5). From equation (76),
v=-c"laTsx |, (D9)
e e

so that equation (D8) can be rewritten as equation (D4). With equation

(D9), this implies that the two evasion strategies agree.

2. The Pursuer

Since Re = oo, it follows from equations (30), (32), and (34) that
Ke = Q, Le = 0, and Ae = 0 is a solution to these equations. There-
fore, from equation (21), I‘p = 0. From Realization I, and the fact that

the evasion strategies are the same,

_ A-1,T, - :

v = -C Ge AeXo (equation (18))
_ _1 T A N
= -C Ge Sxe (equation (D2))
_ -1 T, = .
= -C Ge SOXO (equation (63))

for any }_co. Therefore,

-1..T -
C GeAe—C Geso' (D10)

Since ]."p = 0, it follows from equations (19), (35), and (D6) that

Y =@ _=D. (D11)
p p

Since it follows from equations (D4) and (64) that f(e =8

equation (D1) can be rewritten as

14T e RS
u=-BTG [D& +(S -DST'S )% ]. (D12)
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Also,
d -1 I | -
T [SOEDS SO] = -DS So + DS

Lgs™ls

O

-1
D[T (S,-DS™"8 ) -T S . (D13)

Since equation (D10) holds and D(tf) = S(tf), a comparison of equations
(D13) and (37) shows that

: RIS |
np—(s0 DS So)u (D14)

Using equations (D11) and (D14) in equation (81) and the fact that Fp = 0,
Realization II of the pursuer’s minimax strategy can be expressed as
- —1 T A - E]. =
u=-B Gp [Dxp+(SO DS SO)XO] ,

which agrees with the strategy obtained by Rhodes and Luenberger as

A

expressed by equation (D12) if the xp's are the same in both cases.

In the solution obtained in this report, the estimate %p is gener-

ated by equation (55), which in this case reduces to

& =Gu+TAx +PHR Yz -Hg], £(0)=% . (D15)
p_ p eeo Tpipplp ppl’ Tp 0

From equations (D2), (D10), and (63), the second term in equation (D15)
is just —Gev, so that equation (D15) can be written as
T

¥ =Gu-Gv+PH le[z -H %
P e ppP PP

P popl (D16)

% (0) =x_,
p()

o
which agrees with equation (D3) if Pp = M. But, from equation (23) and
the fact that Ae =0,

P =-PQP: P(0)=P_, D17
P ppps Fpl0 =F, (D17)

which agrees with equation (D7) for M. Therefore, the pursuit
strategies agree.
The demonstration is similar for the case in which the pursuer

has no measurements.
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